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ABSTRACT 
 
 

Li, Yunfeng.  Ph.D., Purdue University, December 2009.  Computational 
Models of 3D Shape Perception.  Major Professor:  Zygmunt Pizlo. 
 

In this study, two computational models were formulated to simulate 

human monocular and binocular 3D shape perception. In the monocular model, 

simplicity constraints (symmetry, planarity, maximum compactness and 

minimum surface area) were used to recover a 3D shape from its single image. 

In the binocular model, the ordinal depth of points in a 3D shape provided by 

stereoacuity was combined with the simplicity constraints to recover a 3D 

shape.  

In two psychophysical experiments, human monocular and binocular 3D 

shape recovery was measured. The comparison between subjects’ 

performance and the performance of the models showed that they were very 

similar. Specifically, monocular performance of both the subjects and the 

model was close to veridical for slants of the symmetry plane in the range 

between 30 and 60 deg. When slants were close to 0 deg or 90 deg 

(degenerate views), monocular performance deteriorated, but the type and the 

magnitude of errors were very similar in the subjects and the model. Binocular 

performance, on the other hand, was close to veridical for almost the entire 

range of slant of the symmetry plane. This is the first empirical study 

demonstrating veridical 3D shape perception and the first computational model 

that performs as well, or even better than the subjects do. 
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INTRODUCTION 
 
 

We can easily perceive the objects around us as three dimensional and 

the percept is usually veridical. However, understanding the underlying 

processes is not easy. To produce the 3D shape percept, our visual system 

has to recover the 3D shape from the 2D retinal image(s). In the past 30 years 

scientists made significant progress towards understanding the process of 3D 

shape recovery and several theories have been proposed to explain this 

phenomenon. For example, Gibson (1979) claimed that our surrounding 

environment provides sufficient information that is directly recorded by the 

visual system. Poggio & Edelman’s multiple view theory (1990) emphasized 

the role of learning in 3D shape perception: having registered many views of a 

3D object in our memory through multiple encounters with the object, we can 

recognize the 3D object when a specific view appears again. However, there 

has been no satisfactory computational model of the underlying mechanisms.  

Currently, many approaches to 3D shape perception are inspired by 

Marr’s theory(Marr, 1982), especially his concept of 2.5D representation. In the 

context of Marr’s theory, 3D shape perception includes two stages - viewer-

centered representation of visible surfaces and an object-centered 

representation of the object. In the first stage, the visual system obtains 

information about orientations of visible surfaces from a variety of depth cues 

and in the second stage it derives the 3D shape representation from the 

surfaces and from the 3D models stored in memory. This theory inspired 

research on 3D shape perception during the last 20 years of the last century, 

specifically on the role of depth cues (Regan, 2000), the relationships among 

and combination of different depth cues (Landy et, al 1995, Hillis et, al, 2004), 
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the perception of 3D surfaces (Koenderink et al., 2004), and on matching 3D 

shapes (Ullman, 1996). Note that Marr’s theory is essentially atomistic and that 

the philosophy behind it is that once we know the orientations of surfaces at 

many points, we can recover the 3D shape represented by these surfaces. 

Although the researchers who follow this approach and study the role of the 

depth cues provided some interesting results, there are several problems that 

remain unsolved. These problems are briefly discussed next. 

The Percept of a 3D Shape may be More Accurate  

Than the Percept of 3D Surfaces 

There is no empirical evidence that the percept of the orientation of 

surfaces is necessary for the 3D shape perception. There are two other 

possible scenarios. First, the percept of the orientation of surfaces may follow, 

rather than precede the percept of 3D shape. In other words, the percept of 3D 

surfaces may be the result of the 3D shape percept. Second, the orientation 

percept and the shape percept may be independent. Psychophysical 

experiments supports both of these possibilities. For example, there is a large 

body of experimental evidence showing that observers perceptually 

underestimate slants of surfaces (Gibson, 1950; Braunstein, 1968). At the 

same time, however, their 3D shape percept is often veridical. If one is 

committed to Marr’s paradigm, one is faced with a question of how to derive 

veridical 3D shape from non-veridical (biased) orientations of surfaces? 

Li (2009) conducted an experiment testing the consistency between a 

subject’s 3D shape percept and the percept of 3D surfaces. The subject was 

presented with an image of a parallelepiped (see Figure 1) and was asked to 

perform two types of judgments based on the 3D percept of the parallelepiped: 

(1) the 3D orientation (slant and tilt) of each of the three visible faces using an 

elliptical probe; (2) the 2D shape of each of the three visible faces. Based on 

these judgments, two 3D shapes were computed: one from 3D orientation and 

the other from 2D shape judgments. These two 3D shapes were significantly 

different. In the follow-up experiment, the same 2D image of a parallelepiped  
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Figure 1

 

. A stimulus in a single trial of the main experiment in Li (2009). The 

top is the image of a parallelepiped. The left bottom image illustrates the 3D 

orientation judgment and right bottom image illustrates the 2D shape judgment. 
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was presented at the top of a display, and the two computed 3D shapes were 

presented side by side at the bottom and they were rotating. The subject was 

asked to choose the 3D shape that was closer to their percept of the 

parallelepiped produced by the 2D image on top. All subjects strongly preferred 

the 3D shape computed from the 2D shape judgments, not the 3D shape 

computed from the 3D orientation judgments. These results strongly suggest 

that the 3D shape perception is not produced from the perception of 

orientations of 3D surfaces. 

Depth Cues are not Necessary for 3D Shape Perception 

In the case of images that do not have any surface depth cues, like line 

drawings, human observers can still perceive 3D shapes. Koenderink (1996) 

compared the subjects’ 3D shape percept produced with two kinds of images – 

one was the image with depth cues (e.g. shading) and the other was just a line 

drawing represented by edges and contours. The subjects’ performance with 

these two kinds of images was similar, which suggests that contours, not depth 

cues are important in 3D shape perception. Li (2005) extended these 

experiments using polyhedra with or without depth cues and found that once 

edges of the polyhedron were clearly visible, subjects could perceive the 3D 

shapes veridically. Depth cues (shading, texture) did not contribute to the 3D 

percept. Depth cues were only important when they served as edge cues, i.e., 

when they facilitated edge detection. 

The Role of Simplicity Constraints 

Li (2005) designed an experiment to test the role of symmetry and 

planarity constraints. In the experiment he tested subjects’ shape 

discrimination using six kinds of 3D objects. Some objects satisfied both 

constraints: the objects were mirror-symmetric and the contours of their faces 

were planar (Figure 2a). Others, did not satisfy either (Figure 2 (c), (f)). Li found 

that when objects were symmetric and their faces were planar, the subject 

could easily tell whether two 3D shapes seen from different viewing 

orientations are same or different (see Figure 3). However, in the case of  
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Figure 2. Stereoscopic pairs (for crossed fusion) of six types of stimuli used by 

Li (2005) (a) Polyhedron with one symmetry plane and planar surfaces. (b) 16 

vertices which were obtained by removing the edges in stimuli (a). (c) 

Polygonal line. The 16 vertices were connected in a random order. (d) Partially 

non-planar, symmetric polyhedron. (e) Planar and asymmetric polyhedron. (f) 

Non-planar and asymmetric polyhedron. 
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Figure 3

 

. One naive subject’s performance (d') for six types of objects. Higher 

d’ represents higher performance (easier task). 
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non-planar and asymmetric objects, the performance was close to chance 

level. The effect of binocular disparity was small. Specifically, binocular 

performance in a given condition was not reliable, unless monocular 

performance was reliable. The fact that there was a high correlation between 

monocular and binocular performance suggests that the same perceptual 

mechanism is used. 

This study showed that simplicity constraints are critical in determining 

the shape percept and the role of binocular disparity is secondary. Will the 

percept still be determined by constraints if depth cues provide conflicting 

information? This question was examined by Pizlo et al. (2005). Their subjects 

were presented with a pair of stereoscopic images of a cube. The image in the 

right eye was stationary and the image in the left eye was changing: it was a 

projection of a cube rotating (oscillating) around the vertical axis (refer to the 

demo at HTTP://VIPER.PSYCH.PURDUE.EDU/PIZLO_CUBES/). Consequently, the 

binocular disparity of the corner of the cube at the visible Y junction was 

changing. If binocular disparity were critical in determining the 3D shape 

percept, subjects would perceive a non-rigid cube and the corner would move 

back and forth along the visual line emanating from the right eye. However, all 

subjects reported that they perceived a rigid cube that oscillated around the 

vertical axis. This percept suggests that simplicity constraint could play more 

important role in determine human 3D shape perception than binocular 

disparity. 

There has Been no Quantitative Model of 3D Shape Recovery 

Based on Depth Cues 

Although some researchers formulated models that can reconstruct the 

orientation of surfaces from depth cues, there is no model that can recover the 

3D shape from a real 2D image. The main problem is related to the unreliability 

of depth cues. When the surface orientation at one point is recovered with 

errors, combining these estimates across many surface points will lead to 

substantially larger errors in estimating the entire shape of a 3D object. 

http://viper.psych.purdue.edu/pizlo_cubes/�
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The four problems listed above suggest that surfaces and depth cues 

are not sufficient to explain the percept of 3D shapes. Information provided by 

edges and curves in a 2D image are probably more important for 3D shape 

perception. In particular, 2D symmetric edges and curves provide all the 

information that is needed to apply 3D simplicity constraints.  

Why are simplicity constraints, like planarity and symmetry, so important 

in 3D shape perception? Simplicity constraints are important because they can 

dramatically decrease the number of possible 3D interpretations of a 2D image. 

It is known that three points in a 3D space define a plane uniquely and 

consequently the position of every point on the plane can be determined once 

its 2D image coordinates are given. Without the assumption of planarity, one 

would have to recover each surface point independently, which can lead to as 

many free parameters as there are image points. Mirror symmetry is even 

more powerful. As Vetter & Poggio (1994) showed, given a single 2D image of 

a mirror symmetric object allows one to compute a second image of the 3D 

object. This image is called a virtual image. Now, one is faced with a problem 

of recovering a 3D shape from two images (views). This is a much easier 

problem compared to 3D recovery from only one view (Ullman, 1996).  

Based on the simplicity constraints, we developed computational models 

to explain human monocular and binocular 3D shape perception. Our models 

are the elaboration of earlier models by Marill (1991), Leclerc and Fischler 

(1992), Sinha (1995) and Chan et al. (2006).  
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MODEL 
 
 

When we view a symmetric 3D object (η0) monocularly or binocularly, 

the 3D object is projected on the retina(s) and forms retinal image(s) (I). To 

perceive the 3D shape, our visual system needs to recover the 3D shape from 

the 2D retinal image(s). Next we will introduce our models and explain how 

they recover a 3D shape from its image(s). This section includes four parts: (1) 

introducing a monocular recovery model; (2) introducing a binocular recovery 

model; (3) deriving a method to measure the dissimilarity between 3D shapes; 

(4) deriving predictions from our recovery models.  

Monocular Recovery 

Monocular recovery refers to computing a 3D shape (η0) from its single 

2D image (I). We assume that the image (I) is a 2D orthographic projection of 

η0. We further assume that the 2D contours of the object have been identified 

in the image. Finally, we assume that η0 is a mirror-symmetric 3D shape. The 

case of mirror-symmetric objects is especially relevant to human shape 

perception because most important objects in our environment, such as animal 

and human bodies, as well as man-made objects are mirror-symmetric. In the 

rest of this document, we will use “symmetric” to mean “mirror-symmetric.” 

To recover a symmetric 3D shape, we need to first establish symmetric 

correspondences among all points in an image. Recall that a 2D image of a 3D 

symmetric shape is itself not symmetric (except for degenerate cases). So, 

when we talk about establishing symmetric correspondences of image points, 

we mean determining which pairs of points in the 2D image are projections of 

pairs of symmetric points in the 3D shape. Such pairs of image points will be 

called pairs of corresponding points. For each point, we need to know where its 
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corresponding point is. In this paper, we use the apostrophe (’) to represent the 

corresponding point. To simplify the model, we only consider a one-to-one 

correspondence. For example, we assume that each point a, has only one 

corresponding point a’, and vice versa. This can be expressed as follows (a’)’ = 

a. We use Ξ to represent the set of all symmetric correspondences in an 

image. Suppose there are n correspondences in an image. Then Ξ can be  

expressed as follows 
 
 

Ξ = {<ai, ai’>     i = 1,2,3,…,n}                                  (1) 
 
 
In a perfectly symmetric 3D shape, the lines connecting the symmetric pairs 

are parallel, and the orthographic projections of those lines in the image plane 

are also parallel. Using this parallelism property, we can determine the set of  

correspondences (Ξ) as follows. 
 
 

1. Specify a direction τ as the direction of the lines connecting 

the corresponding pairs of points in an image. For example, 

in Figure 4(a), the direction of the line a1a1’ is assumed to be 

τ.   

2. For all other points (ai) in one curve of the image, find their 

corresponding points (ai’) in another curve by using the 

direction τ. Specifically, in Figure 4(a), for a point a2 in one 

curve, we draw a line that passes through a2 and is parallel to 

a1a1’. The intersection (a2’) with the other curve is the point  

 corresponding to a2.   
 
 

Applying this method, we can find the correspondences for each point on a 

curve. However, the set of correspondence (Ξ) obtained this way is not unique 

because it depends on the choice of τ. Note that τ is the tilt of the symmetry 

plane of the recovered 3D shape. Therefore, different tilts of the symmetry  
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Figure 4

 

. Illustration of two sets of symmetric correspondences for the same 

pairs of curves. 
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plane will lead to different correspondences (Ξ). Figure 4 illustrates how the set 

of correspondences (Ξ) is affected by τ. In Figure 4(a) and (b), there are three 

pairs of corresponding points (<a1, a1’>, <a2, a2’> and <a3, a3’> ) and the lines 

aa1’,a2a2’ and a3a3’ are parallel. Although the images in Figure 4(a) and (b) are 

the same and points a1, a2 and a3 are at the same positions, their 

corresponding points a1’, a2’ and a3’ are at different positions.  

How our visual system determines Ξ is beyond the scope of this 

dissertation and it is left for future study. Here, we assume that the set of 

correspondences (Ξ) among all points is known and it is consistent with that of 

the original 3D shape η0.  

Once the set of corresponding points (Ξ) in an image is determined, the 

3D shape can be recovered. First we set up the Cartesian coordinate system, 

which is defined as follows: The image plane is the XY plane. The X axis has 

the same direction as τ and the Y axis is orthogonal to the X axis in the image 

plane. The origin of the coordinate system can be set at an arbitrary point in 

the image plane. The Z axis is perpendicular to the image plane and indicates 

the direction in depth. Figure 5 illustrates the Cartesian coordinate system we 

use for the recovery of the 3D shape (η0).  

Using this coordinate system, recovering the 3D shape is equivalent to 

computing the Z value for each point in the image. We use the lower case letter 

to represent the coordinate of a point in the image plane and a capital letter to 

represent the coordinate of a recovered point in the 3D space. For any pair of 

corresponding points <ai, ai’>, their coordinates are (xi, yi) and (xi’, yi’). The 

coordinates of the recovered symmetric pair <Ai, Ai’> are (Xi, Yi, Zi) and (Xi’, Yi’, 

Zi’). From the property of the orthographic projection, the following equations  

are satisfied: 
 
 

xi = Xi                                                              (2) 
yi = Yi                                                              (3) 
xi’ = Xi’                                                            (4) 
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Figure 5

 

. The coordinate system used for 3D shape recovery. XY plane is the 

image plane. X axis represents the direction of τ (the direction of lines 

connecting the corresponding points in the image). Y axis is orthogonal to X 

axis. Z axis is perpendicular to the image plane and it indicates the direction in 

depth. 
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yi’ = Yi’                                                            (5) 
 
 
For the coordinate system defined above, the Y values for a and a’ are the  

same. It follows 
 
 

yi = yi’                                                             (6) 
 
 
From equations (3) and (5), we can obtain 
 
 

Yi = Yi’                                                            (7) 
 
 
As a result, the points of any symmetric pair <Ai, Ai’>, have same Y value. Let 

πS be the symmetry plane of the recovered 3D shape and lS be the intersection  

of the image plane πXY and πS. Then we have the following properties: 
 
 

1. Ai and Ai’ are symmetric with respect to πS. Hence the line 

AiAi’ is perpendicular to πS. Because lS is on the plane πS, lS 

is perpendicular to AiAi’.  

2. ai and ai’ are the orthographic projections of Ai and Ai’. Hence 

the lines aiAi and ai’Ai’ are perpendicular to the image plane 

πXY. Because lS is on the plane πXY, lS is perpendicular to aiAi 

and ai’Ai’.   

3. From (1) and (2) it follows that lS is perpendicular to the plane 

defined by ai, ai’, Ai, and Ai’. From this, it follows that lS is 

perpendicular to the line aiai’.   

4. Because ai and ai’ have the same y value, the line aiai’ is 

perpendicular to Y axis. 

5. From (3) and (4) it follows that lS is parallel to Y axis. 
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Without loss of generality, let lS coincide with the Y axis (see Figure 6). Let α be 

the angle between the symmetry plane πs and the image plane πXY and the 

domain of α is (-90, 90). Then the normal of the symmetry plane (πs) is [sin(α),  

0, –cos(α)] and the plane is expressed by  
 
 

sin(α)X-cos(α) Z = 0                                                  (8) 
 
 
Since all symmetric pairs <Ai, Ai’>, are symmetric with respect to the symmetry  

plane πs, Ai and Ai’ must satisfy the following two conditions:  
 
 

1. The midpoint of Ai and Ai’ is on the symmetry plane πs. It  

 follows 
 
 

0.5(Xi+Xi’)sin(α)-0.5(Zi+Zi’)cos(α)=0                                          (9) 
 
 

2. The line connecting Ai and Ai’ is perpendicular to the  

 symmetry plane πs. It follows 
 
 

 (Xi-Xi’)cos(α)+(Zi-Zi’)sin(α)=0                                            (10) 
 
 
From equations (9) and (10), we obtain 
 
 

Zi = (-cos(2α)Xi+Xi’)/sin(2α)                                           (11) 
                 Zi’=(-cos(2α)Xi’+Xi)/sin(2α)                                            (12) 

 
 
Note, Xi = (Xi’)’.Thus, equation (12) can be written as  
 
 

Zi’=(-cos(2α)Xi’+(Xi’)’)/sin(2α)                                        (13) 
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Figure 6

 

. The illustration of 3D shape recovery. η is a recovered 3D shape from 

the image I. lS is the intersection of the symmetry plane πS of the recovered 3D 

shape and the image plane πXY and it coincides with the Y axis. α is the angle 

between πS and πXY. 
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We see that equations (13) and (11) have the same form. Therefore, equation 

(11) can be used for all points, primed and unprimed. Based on  

equation (11) we can state the following: 
 
 

1. To compute the Z value of a point (Ai), we need to know not 

only its X value, but also the X value of its symmetric 

counterpart (Ai’). In other words, both of their orthographic 

projections ai and ai’ must be visible. For those pairs for which 

one of the points is hidden or invisible, equation (11) is not 

applicable. In this case, we will use a planarity constraint to 

recover these points - the details of this method are 

presented later in this dissertation. 

2. In equation (11), Xi and Xi’ are obtained from the image. The 

only unknown variable is α (the angle between the symmetry 

plane πS and the image plane πXY). Therefore, the recovery is 

uniquely determined by α. Let η(α) be the recovered 3D 

shape when the angle between πS and πXY is α. Figure 7 

illustrates three possible recovered 3D shapes corresponding 

to three angles (α): -60, -45 and -30. Thus, once the set of 

symmetric correspondences in an image is set up, the 3D 

shape recovery is characterized by one free parameter.   

3. Because Z(-α) = -Z(α) and the domain of α is symmetric, 

equation (11) is an odd function of α. For any two recovered  

 points Zi and Zj, they have the following relation 
 
 

Zi(α)-Zj(α) = -(Zi(-α)-Zj(-α)).                                  (14) 
 
 

 This means that in the two recoveries η(α) and η(-α), the 

distance between any two points is the same. It follows that 

these two 3D shapes are identical except that they are  
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Figure 7

 

. Three recoveries from the same image. The angles (α) between the 

symmetry plane of the recovered 3D shapes and the image plane are -60, -45, 

and -30, respectively. 
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 inverted in depth. Note that |α| is the slant of the symmetry 

plane. Therefore, if the slant of the symmetry plane of the 

recovered 3D shape is known, two identical 3D shapes can 

be produced. These two shapes are related to each other by  

 depth reversal. 
 
 
To summarize, given a 2D orthographic projection (I) of a  symmetric 3D 

shape (η0), if we know the symmetric correspondence (Ξ) among all points, 

there are infinitely many symmetric 3D interpretations and they are determined 

by the angle (α) between the image plane (πXY) and symmetry plane (πS). 

Suppose all those symmetric 3D interpretations form a set Ψ, which can be  

expressed as follows: 
 
 

Ψ(I,Ξ)={η=η(I,Ξ,α), α∈(-90,90)}                            (15) 
 
 
Expression (15) explicitly states that the key to the recovery of a unique 

symmetric 3D shape is to decide what the orientation of the symmetry plane is. 

We already know that the tilt of the symmetry plane determines the 

correspondences Ξ. It will be shown below that the slant of the symmetry plane 

determines the aspect ratio of the recovered 3D shape. Because we have 

assumed that the correspondences (Ξ) are known for a given image, the 

symbols I and Ξ will henceforth be ignored in equations and expressions. In  

particular, the expression (15) can be written as  
 
 

Ψ={η=η(α), α∈(-90,90) }                                            (16) 
 
 

So far we have explained how to recover the depth of a pair of 

symmetric points when both points are visible. If one of the two points is 

occluded, these points cannot be recovered using the method described. For 
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example, in the case of point a4 in Figure 8(a), its counterpart is invisible and 

we cannot use equation (11) to compute the Z value for this point. For this 

case, we will first use a planarity constraint to recover the visible point a4. 

Specifically, we begin by recovering three pairs of visible points: <a1, a1’>, <a2, 

a2’> and <a3, a3’>. If we know that a4 is on the plane determined by a1, a2 and  

a3, we compute the Z value for a4. There are two ways to do it. 
 
 

1. Using equation (11), we recover points (A1, A2 and A3) as well 

as their symmetric counterparts from a1, a2, a3 and a1′, a2′, 

a3′.Then we compute the plane defined by A1, A2 and A3. 

Finally, we compute the intersection between the plane and 

the line that passes through a4 and is orthogonal to the image 

plane. The intersection is the recovered point (A4) whose 

image is a4. Because A1, A2 and A3 , as well as their 

symmetric counterparts (A1’, A2’ and A3’) have already been 

computed, we know the symmetry plane. The symmetric 

counterpart of A4 is obtained by reflecting A4 with respect to 

the symmetry plane. 

2. Suppose a4’ is the symmetric counterpart of a4. Because a4 is 

on the same plane as a1, a2 and a3, a4’ must be on the same 

plane as a1’, a2’ and a3’. Since these two planes are 

symmetric, their orthographic projections on the image plane 

are related by a 2D affine transformation (refer to Appendix A 

for the details of the proof). The parameters of a 2D affine 

transformation can be uniquely determined by 3 points. 

Because <a1, a1’>, <a2, a2’> and <a3, a3’> are the pairs of 

corresponding points in the 2D image, we can compute the 

parameters of the 2D affine transformation between these 

points. Next we apply this affine transformation to a4 and 

obtain its invisible counterpart (a4’). Then we can use  
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(a)                                                           (b) 

 
Figure 8

 

. The illustration of computing the hidden curves (or points) using the 

affine transformation method. (a) An image of car. <a1, a1’>, <a2, a2’> and <a3, 

a3’> are pairs of corresponding points. The symmetric counterpart of a4 is 

hidden. (b) The hidden curves, computed by applying a 2D affine 

transformation, are shown as dashed lines. 
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 equation (11) to compute the Z values of A4 and A4′. Figure  

 8(b) shows the hidden curves computed using this method1

 
.   

 
The derivation described above shows that a symmetric 3D 

interpretation of an image is not unique. So, which 3D shape from the set (ψ) of 

recoveries corresponds to the subject’s percept? We introduce two other 

constraints – maximum 3D compactness and minimum surface area. The 

compactness (C) of a 3D shape (η) is defined as C(η)=V(η)2/S(η)3, where V(η) 

represents the volume of η and S(η) represents the surface area of η. In the set  

ψ, we choose the 3D shape ηC that has the maximum compactness: 
 
 

ηC=arg max(C(η))        η∈ψ                                        (17) 
 
 
Similarly, the minimum surface area constraint chooses in the set ψ the 3D  

shape that has the minimum surface area:  
 
 

ηS=arg min(S(η))        η∈ψ                                        (18) 
 
 
Both of these constraints can lead to a unique 3D recovery which is close to 

the percept. We found, however, that the best results are produced by a 

combination of the two constraints. By best, we mean the most veridical and 

the closest to the subject’s percept. How can these two constraints be 

combined? Note that minimizing surface area is equivalent to maximizing 

1/S(η): 

                                            
1 The 2D affine transformation is equivalent, in this case to a simple rigid translation in the 2D 

image. This is because the two sides of the truck are parallel in 3D. However, in the general 
case, the 2D affine transformation will not be a rigid motion.  
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arg min(S(η)) = arg max(1/S(η))        η∈ψ                          (19) 
 
 
It follows that a combination of these two constraints is equivalent to  

maximizing C(η) ⊕ 1/S(η), which can be expressed as 
 
 

ηM=arg max(C(η) ⊕ 1/S(η))        η∈ψ                               (20) 
 
 
The binary operation ⊕ is defined as follows:  
 
 

a⊕b = a×bn    n≥0                                                  (21) 
 
 
So, the combination of these two constraints is equivalent to  
 
 

ηM=arg max(V(η)2/S(η)3+n)        η∈ψ                                 (22) 
 
 

The exponent n represents the relative weight assigned to the 

constraints. When n=0, the combination is equivalent to the maximum 3D 

compactness constraint; when n=∞, the combined constraint is equivalent to 

the minimum surface area constraint. Our simulations showed that n=3 is 

optimal in the sense that the recoveries are close to veridcal. It follows that the 

combined constraint corresponds to maximizing V(η)2/S(η)6, which is 

equivalent to maximizing V(η)/S(η)3. Therefore, the recovered 3D shape from  

the monocular model can be expressed as  
 
 

ηM = arg max(V(η)/S(η)3)         η∈ψ                               (23) 
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Suppose ηM is the recovered 3D shape when a 3D shape η0 is viewed 

monocularly. Equation (23) defines the mapping between η0 and ηM. We use  

the following function to represent this mapping,  
 
 

ηM =fM(η0)                                                    (24) 
 
 

The above model can only be applied to those 3D shapes whose 

volumes and surfaces are well defined, like polyhedron. However, for many 

objects we meet in our daily life, like airplanes, trees, chairs, birds, the contours 

present in the image do not uniquely specify the volume and/or surface of the 

3D object. This was the case with the truck in Figure 8. To make our model 

more general, we modified the above model: we compute the convex hull (H) 

for each recovered shape in ψ first. For a 3D shape η, its convex hull (H(η)) is 

the smallest convex 3D object that contains η  (see Figure 9). Since the volume 

and surface area of a convex hull is well defined, we can compute its 

V(H(η))/S(H(η))3. Then we find the 3D shape whose convex hull has the  

maximum V/S3. This process can be expressed as 
 
 

ηm’=arg max(V(H(η))/S(H(η))3)    η∈ψ                                  (25) 
 
 
This monocular model has been applied to recover many different kinds of 3D 

shapes, such as polyhedra (Li, Pizlo & Steinman, 2009) and parallelepipeds 

(Li, 2009). The recovery of real 3D objects, such as animals (Li & Pizlo, 2008), 

shows that maximizing V/S3 of the convex hull works well. The model’s 

recovery is very similar to human percepts. The following websites show 

examples:  HTTP://WWW1.PSYCH.PURDUE.EDU/~SAWADA/MINIREVIEW/DEMO_POLY

_A.HTML 
and HTTP://WWW1.PSYCH.PURDUE.EDU/~SAWADA/MINIREVIEW/DEMO_TRUCK.HTML. 

http://www1.psych.purdue.edu/~sawada/minireview/demo_poly_a.html�
http://www1.psych.purdue.edu/~sawada/minireview/demo_poly_a.html�
http://www1.psych.purdue.edu/~sawada/minireview/demo_truck.html�
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Figure 9

 

. The left picture illustrates a recovered jeep from the image. The right 

one shows the convex hull of the recovered jeep. 
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Note, that the recovery from a real image is a little different from the recovery 

of a polyhedron from a synthetic image. In Appendix B, the process of recovery 

from a real image is described, including how noise in an image is handled. 

Binocular Recovery 

Because human eyes are about 6 cm apart, what the two eyes see is 

slightly different - the left eye sees more of the left side of an object and the 

right eye sees more of the right side. This difference is called binocular 

disparity. Although this phenomenon has been known for a long time (Euclid 

described it in about 300 B.C.), the relation between binocular disparity and 

depth perception hadn’t been demonstrated until Wheatstone designed the first 

stereoscope in 1838. Wheatstone used two mirrors to reflect a pair of pictures 

(the pair of pictures is called a stereogram) to the two eyes separately. When 

the two images are fused, the object rendered in the pictures appears solid. 

This phenomenon can be explained from a geometrical view. Figure 10 

illustrates the relation between depth and binocular disparity in a simple case 

of two points. Suppose the eyes fixate the point F at distance d from the eyes. 

FL and FR are the retinal images of F, and they fall on the fovea of the left and 

right eyes. Another point A is at a distance of ∆d behind F. The visual angle 

between AL and FL in the left eye is αL. If AL is to the right of FL, the sign of αL is 

positive and if AL is to the left of FL, the sign of αL is negative. The visual angle 

between AR and FR in the right eye is αR (the rule for deciding about the sign is 

the same as in the left image). If two points on the left and right retina form the 

same visual angles with their corresponding foveas, these two points are called 

corresponding points. The binocular disparity (δ in radians) of the images of F 

is zero because FL and FR fall on the corresponding points. The binocular 

disparity of the images of A is αL-αR. Also note that binocular disparity of the 

images of A is equal to ω-θ.  If the fixation distance (d) is much greater than 

depth (∆d) between A and F, and both points are close to the saggital plane, 

binocular disparity satisfies the following formula (Howard & Rogers 2002): 



www.manaraa.com

27 

 
 
 
 
 
 
 
 

 

 

 
Figure 10

 

. F is the fixated point at distance d from the eyes. FL and FR are the 

retinal images of point F and they are on the fovea of each retina. A is a 3D 

point which is ∆d behind F. AL and AR are the retinal images of point A. The 

interocular distance is I. 
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                                                   (26) 
 
 
where I is the interocular distance. The relation between binocular disparity and 

relative depth is linear - the bigger the binocular disparity, the bigger the 

relative depth. If we assume that the interocular distance (I) and the distance 

(d) between fixation point F and the eyes are known, the relative depth of point 

A with respect to point F can be computed from binocular disparity. 

Julesz’s (1971) invention of a random-dot stereogram psychophysically 

proved that a 3D object can be perceived through binocular disparity only. The 

finding of disparity-tuned cells in monkey’s primary visual cortex (Hubel & 

Wiesel 1963, Hubel, 1995), which indicates that binocular disparity is used by 

the visual system. 

These geometrical, empirical and biological facts suggest that binocular 

disparity plays an important role in perceiving depth and 3D shapes. However, 

many experiments (e.g., Norman, Todd, Perotti, & Tittle, 1996; Todd & 

Norman, 2003; Johnston, 1991) showed that the 3D shape percept from 

binocular disparity is neither accurate nor reliable. Consider Johnston’s (1991) 

experiment, which is representative for these groups of studies. She asked the 

subject to view a random-dot stereogram of an elliptical cylinder and adjust its 

depth so that it is perceived as circular. The viewing direction was orthogonal 

to the axis of the cylinder. She found that at an intermediate distance (about 1 

meter), a subject’s percept was close to veridical (that is a circular cylinder was 

perceived as circular). When the viewing distance was greater than 1 meter, 

subjects systematically underestimated the depth and, as a result, a cylinder 

that was stretched in depth, compared to a circular cylinder, was perceived as 

circular. The converse was true for distances less than 1 meter. The systematic 

error was up to a factor of 2. 

There is, however, another type of binocular judgment, which is 

extremely reliable. Namely, the observers can make very accurate judgments 
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about order of points in depth (Blakemore 1970; Westheimer 1979). In fact, this 

judgment can be done with a precision that is one order of magnitude better 

than the distance between receptors on the retina (in technical jargon, this is 

called “sub-pixel resolution) (Westheimer & McKee, 1980). Because of this 

high precision, this judgment is called “hyperacuity” (it is also called 

stereoacuity). 

To summarize, binocular vision is quite unreliable in judging the depths 

of points and 3D distances, but it is extremely reliable in judging depth order of 

points. How can the ordinal depth be incorporated into our shape recovery  

model? This is done in two steps: 
 
 

1. Find the subset θ of ψ, in which the 3D shapes have the 

depth order as determined by stereoacuity; 

2. In the subset θ, choose the one that has the maximum  

 V/S3.   
 
 

The limits of stereoacuity are usually characterized by its threshold. 

Threshold refers to the smallest distance in depth that can be reliably detected. 

“Reliably” usually means 75% or 84% of the time. Therefore, for two points Ai  

and Aj, there are three possibilities for the decision about their depth order: 
 
 

1. Ai is judged as farther than Aj. We write it as Ai>Aj; 

2. The order is uncertain. We write it as Ai~Aj;   

3. Ai is judged as closer than Aj. We write it as Ai<Aj;   
 
 
Let O(Ai,Aj) represent the judgment about depth order between two points: 
 
 

                                   (27) 
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The ability to detect the depth order is affected by several factors: 
 
 

1. The depth difference (∆d) between Ai and Aj. If this difference 

is much larger than the threshold, depth order is easy to 

judge. 

2. The angular distance between Ai and Aj. When the angular 

distance of two points increases, the stereoacuity threshold 

increases, as well.   

3. The viewing distance (d). When the viewing distance 

increases, the separation in depth corresponding to threshold 

increases, according to the formula (26).   

4. Eye movements. Wright (1951) showed that when the subject 

was allowed to change the fixation between two points, the 

stereoscopic acuity was better than that when he/she fixated 

on one point. 

5. Context. The depth order judgment is affected by the surface 

on which the points reside. Norman & Todd (1998) showed 

that when two points are shown in total darkness, subjects 

can easily judge their depth order. However, when the points 

are perceived as lying on a surface, the stereoscopic 

threshold increases substantially. 

6. Individual differences. Ogle (1950) tested two subjects’ 

stereoscopic acuity and found that there were substantial 

differences between subjects: the difference in the 

stereoacuity threshold was up to a factor of 2. Large 

individual variability has been confirmed in a number of other  

 studies. 
 
 

From several papers that reported stereoacuity thresholds, we chose 

Rady & Ishak’s (1955) study to simulate the human’s ability to detect depth 
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order between points because their study was most comprehensive. 

Specifically, (1) several factors mentioned above were considered in their study 

(depth difference, angular distance, eye movements); (2) they used five 

angular separations of the two points, which is more than what could be found 

in other studies; (3) they measured the stereoscopic acuity for points without 

any context, which leads to the lowest thresholds. The simulation using their 

result will provide an upper limit for binocular shape recovery. Note that 

stereoacuity threshold changes with the change of angular separation of two 

points – large separation results in high threshold and small separation results 

in low threshold. This effect of angular separation on the threshold results from 

the non-uniform distribution of receptors in the human retina. This means that 

the simulation of stereoacuity threshold in human’s depth order judgment 

represents the finite and non-uniform resolution on the retinas. The details of 

how we used these stereoscopic thresholds in our simulation model are given 

in Appendix C. The simulation model uses the following two properties: given  

two points Ai,Aj,  
 
 

1. O(Ai,Aj) = -O(Aj,Ai). This means that if a subject can tell that 

the point Ai is farther than Aj, he/she will also be able to tell 

that Aj is closer than Ai; 

2. O(Ai,Ai) =0. This means that if two points are at the same  

 position, the depth order between them is uncertain.   
 

 
For a 3D shape η0, suppose there are n visible points when viewing it 

binocularly from some direction. Then we can build a n×n matrix (Mη0) in which  

the value of each element (i,j) represents the depth order between Ai and Aj: 
 
 

M(i,j) = O(Ai,Aj)                      i,j = 1,2,…,n.                        (28) 
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We call this the “depth order matrix.” Corresponding to the properties of  

O(Ai,Aj), the depth order matrix has the following two properties: 
 
 

1. It is a skew symmetric matrix because M(i,j) = -M(j,i). 

2. The elements on the diagonal are 0.   
 
 

In a depth order matrix, the nonzero elements are called “valid” 

elements and the zero elements are called invalid elements. In order to discuss 

the properties of the depth order matrix, consider an example. Let M1 and M2  

be two depth order matrices. 
 
 

M1 =  

M2 =  

 
 

The depth order matrix represents the state of depth order between points in a 

3D shape. Having two (or more) depth order matrices, we can only compare 

them, but it does not make sense to perform ordinary matrix operations on 

them. For two depth order matrices Mk and Ml, if the element (i,j) in both Mk 

and Ml is valid, we call the element (i,j) comparable for Mk and Ml. Otherwise, 

the element is not comparable. For example, for the above two depth order 

matrices M1 and M2, the elements (1,2), (2,1), (2,3) and (3,2) are comparable. 

On the other hand, the elements (1,3) and (3,1) are not comparable because 

they are invalid in M2. The equality between Mk and Ml is defined as follows: Mk 

= Ml if and only if for all comparable elements (i,j), Mk(i,j) = Ml(i,j). Note the 

equality between depth order matrices is not transitive, which means Mk ≈ Ml 

and Ml ≈ Mn does not imply Mk ≈ Mn. 

So, even though the values at (1, 3) and (3, 1) in M1 and M2 are 

different, M1 are M2 are equal because the values in all comparable elements 
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are the same. This definition of equality of depth order matrices will allow 

comparing two identical shapes presented at different viewing distances. When 

the viewing distance for one shape is very large, most of the depth orders will 

be uncertain. In the extreme case, this model will allow the comparison of two 

3D shapes, one viewed monocularly and the other viewed binocularly (see 

below). 

Figure 11 illustrates the comparison of the depth order matrices 

between two complex 3D shapes. Both shapes are possible 3D interpretations 

of the same 2D image, in which 13 points are visible. The shape on the left is 

labeled as η(-30) because the angle (α) between its symmetry plane and image 

plane is -30 degrees, and the one on the right is labeled as η(-45). Suppose 

both of them are viewed from the distance of 50cm (recall that the viewing 

distance is important in deciding whether the depth order for a pair of points 

can be discriminated). The depth order matrices for η(-30) and η(-45) are 

computed. For illustration purposes, the matrices are visualized and the cell 

with the value of 1, 0 or -1 is filled in red, gray or blue, respectively. Comparing 

the red and blue patches between these two color squares, we see that Mη(-30)≠ 

Mη(-45). Since our visual system can tell that the depth orders are different for 

some pairs of points, these two 3D shapes will be considered different. Next 

we will explain how to use the depth order matrix to recover a 3D shape.  

Suppose that: (1) a symmetric 3D shape η0  is viewed binocularly from a 

distance d and its depth order matrix is Mη0, (2) its orthographic projection on 

the cyclopean eye is I (cyclopean eye is an abstract concept referring to the 

information available if the camera were placed at the midpoint of the two eyes. 

This image can be estimated by combining the images from the left and right 

eyes); and (3) the set of all symmetric recoveries from the image I is ψ. We 

obtain a subset θ of ψ, in which for all recovered shapes, the depth order 

matrices are equal to Mη0 when the shapes are viewed from the same distance 

d. This subset is expressed as follows 
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Figure 11

 

. Two depth order matrices corresponding to two 3D shapes. The two 

3D shapes are possible 3D interpretations of the same 2D image and they are 

viewed from a distance of 50cm. Both of them have 13 visible points. The color 

square represents the depth order between any two visible points. Red patch 

at (i,j) represents that  point i is farther than point j, blue represents that point i 

is closer than point j, and gray represents that the depth order between point i 

and j is uncertain. By comparing the red and blue patches between the two 

squares, we see that these two depth order matrices are not equal. 
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Θη0 = {η | Mη ≈ Mη0 and η∈ψ}                                    (29) 
 
 
Note that stereoacuity alone cannot tell the difference between the 3D shapes 

in Θη0. Then, which one corresponds to our percept when we view η0 

binocularly? We conjecture that our visual system chooses the 3D shape that 

jointly maximizes 3D compactness and minimizes the surface area. In other 

words, the binocular recovery, similarly to the monocular recovery, will choose  

a 3D shape that has the maximum V/S3 in the set θ. It is expressed as   
 
 

ηB = arg max(V(η)/S(η)3)         η∈θ                             (30) 
 
 
Now, the mapping between ηB and η0 is defined as  
 
 

ηB = fB(η0)                                                      (31) 
 
 

Like the symmetry constraint that reduces the degrees of freedom 

(DOF) of recovery from N to 1 (N is the number of visible points), stereoacuity 

limits the possible interpretations to a small set and this set usually leads to 

better performance. It is this reason why binocular performance is usually 

better than monocular performance. However, when the viewing distance 

increases, binocular performance becomes worse because the stereoacuity 

threshold, when expressed in cm, becomes higher. Our binocular model can 

account for this fact. It is known that stereoacuity is affected by the viewing 

distance. Large viewing distances lead to a less reliable judgment of depth 

order between points. Figure 12 illustrates the change of the depth order matrix 

when a 3D shape is viewed at two different distances. When the viewing 

distance is 100cm, the depth orders of only a few pairs of points are uncertain 

(see Figure 12(a)). However, when the viewing distance is increased to 

1000cm, the depth order of most pairs of points is uncertain (in Figure 12(b),  
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                             ( a)                                                   (b) 

 

Figure 12

 

. The comparison of the depth order matrices when a 3D shape is 

viewed at two different distances. (a) The viewing distance is 100cm and in its 

depth order matrix, the values of most elements are non-zero. (b) The viewing 

distance is 1000cm and in its depth order matrix, the values of most elements 

are zero. 
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most of cells are filled in gray). This means that the number of valid elements in 

this depth order matrix is small, which will lead to a larger set of possible 3D 

interpretations and consequently less reliable recovery of a 3D shape. Once 

the viewing distance is large enough, the depth order between all pairs of 

points is uncertain and the number of valid elements is decreased to 0. Then 

the set θ is the same as ψ. At this condition, binocular disparity has no effect 

and the recovery by the binocular model is same as that by the monocular 

model. 

Note that expression (30) suggests that the mapping between the real 

3D shape and the recovered 3D shapes is many-to-one, not one-to-one. In 

other words, we can find a subset (φ) of ψ in which each 3D shape has the  

same recovery (ηB). Or it is simply expressed as 
 
 

φ = {η | ηB = fB(η), η∈ψ}                                                   (32) 
 
 
For example, suppose ηmax is the 3D shape that has the maximum V/S3 in a set 

ψ. For every 3D shape η in the set ψ, we compute th corresponding subset θη 

in which all 3D shapes have the same depth order matrices as that of η. Then 

we form a set (φ), in which for each 3D shape η, ηmax is an element of their  

corresponding subset θη. The set φ is expressed as follows: 
 
 

φ = {η|ηmax∈ θη}                                              (33) 
 
 

According to our model, for all the 3D shapes in φ, the recovered 3D 

shape is ηmax. This implies that the 3D shape percept will be the same for a 

number of different 3D original shapes. 

So far, we introduced the monocular recovery model and the binocular 

recovery model. To test the psychological plausibility of these models, we need 

to run psychophysical experiments to measure subjects’ performance. Before 
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that, we need to establish a way to measure the dissimilarity between two 3D 

shapes so that we can compare the empirical data and the simulation data.  

The Measures of Dissimilarity Between Two 3D Shapes 

Suppose η1 and η2 are two 3D shapes recovered from the same 2D 

image. They both are in the set ψ and the angles between their symmetry 

planes and image plane are α1 and α2 (see Figure 13). From equation (11), we 

know that for any point (a) in the image plane, the z-coordinate of its 3D  

recovery (A1) in η1 is  
 
 

                                                  (34) 

 
 
and the z-coordinate of its 3D recovery (A2) in η2 is  
 
 

                                                (35) 

 
 
After subtracting the left-hand and right-hand sides, we obtain  
 
 

                                 (36) 

 
 

It can be seen that equation (36) represents a 3D affine transformation  

between η1 and η2: 
 
 

                       (37) 

 
 
Let Q represent this 3D affine transformation matrix, so that the relation 

between η1 and η2 can be written simply as η2 = Qη1. Note that Q can be  
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Figure 13

 

. The comparison between two 3D shapes. η1 and η2 are two 

recovered 3D shapes from the image I. The angles between image plane and 

the symmetry plane of η1 and η2 are α1 and α2.A1 is a point in η1 whose 

corresponding point in η2 is A2. 
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decomposed and written as a product of three simpler matrices Q = USV’,  

where  
 
 

                                          (38) 

                                                (39) 

                                          (40) 

 
 
U and V are orthonormal matrices, so they represent some 3D rotation 

operations.  S is a diagonal matrix and it represents a similarity transformation. 

So, the affine transformation from η1 to η2 corresponds to a sequence of the 

following three simpler transformations. First, the object is rotated by –α1 

around Y axis, then it is elongated or compressed along X and Z axes by 

factors of cos(α1)/cos(α2) and sin(α1)/sin(α2). Finally, the transformed 3D shape 

is rotated by α2 around Y axis.  

Conceptually, this product of three transformations can be simplified. 

Let’s use V to define a new coordinate system. This eliminates the first rotation.  

The affine transformation corresponds now to the combination of a similarity 

transformation and a rotation. First, η1 is stretched or compressed along new X 

and Y directions (in the original coordinate system the stretch and compression 

is performed along [cos(α1) 0 sin(α1)] and [-sin(α1) 0 cos(α1)]. Then the 

transformed 3D shape is rotated by (α2-α1) around Y axis. Figure 14 illustrates 

the process. In Figure 14(a), the angles (α) of the recovered 3D shapes η1 and 

η2 are 30 and 45 degrees. First, η1 is compressed along the new Z direction 

(the direction orthogonal to the symmetry plane) by a factor of sin(30)/sin(45)  
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         ( a)                                  (b)                                      (c) 
 

Figure 14

 

. Illustration of the 3D affine transformation between two 3D 

recovered objects. (a) η1 (the bottom) and η2 (the top) are recovered from the 

same image and their corresponding angles α (the angle between the 

symmetry plane and the image plane) are 30 and 45 degrees. The two arrows 

indicate the directions along which η1 will be compressed or stretched. (b) η1 is 

compressed along the normal of its symmetry plane. (c) the resulting object is 

stretched along the direction indicated by the other arrow. 
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(see Figure 14(b)). Next, the resulting shape is stretched along the new X 

direction by a factor of cos(30)/cos(45) (see Figure 14(c)). After this similarity 

transformation, the two shapes (transformed η1 and  η2) are identical except for 

their 3D orientation. Now, if we rotate the transformed η1 by 15 degrees around 

Y axis, we obtain η2.  

The decomposition of Q shows that the shape changes (it is stretched 

and/or compressed) at the stage of the similarity transformation S. The 

directions of the shape changes are determined by V. Let m and n be the first  

and the third column vectors in V 
 
 

m = [cos(α1) 0 sin(α1)]                                          (41) 

n = [-sin(α1) 0 cos(α1)]                                         (42) 
 
 
Then m and n represent the two directions of shape change. In the matrix S, 

the two elements (cos(α1)/cos(α2) ,  sin(α1)/sin(α2) ) in the diagonal are the 

change coefficients along m and n. Note that because α1 and α2 ∈(-90,  90), 

cos(α1)/cos(α2) is always positive. However sin(α1)/sin(α2) can be either 

positive or negative. Negative means that the points on one side of the  

symmetry plane move to the other side after the affine transformation.  Let 
 
 

                                                       (43) 

                                                       (44) 

 
 
Then em and en represent the magnitude of change along m and n. When α1 is 

fixed and α2 is changing, the point (em, en) falls on a curve. Figure 15(a) shows 

the relation between em and en. Different curves correspond to different α1. 

Note that when em=1, en is also equal to 1, and vice versa. This is because  
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                       (a)                                                       (b) 
 

Figure 15

 

. (a) When α1 is fixed, (em, en) falls on a curve. The five curves 

correspond to the five slants of η1, 15, 30, 45, 60 and 75 degrees. (b) When a 

point (km, kn) falls in the yellow area, the dissimilarity ϖ= kn. When it falls in the 

cyan area, ϖ= km. 
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em=1 implies that α1= |α2| and consequently en=1. This is illustrated in Figure 

15(a) where all curves intersect at (1, 1). 

Consider two values of em: 2 and 0.5. Both of these values represent a 

change by the same factor except that the former means that a 3D shape is 

stretched by a factor of 2 whereas the latter means that a 3D shape is 

compressed by a factor of 2. Since we are interested in measuring dissimilarity  

of two shapes, it is better to use a log transformation of em and en: 
 
 

km = log2(em)                                                      (45) 

kn = log2(en)                                                      (46) 
 
 
The sign(km) (or sign(kn) ) represents whether η1 is elongated or compressed 

compared with η2 along the direction m (or n), and |km| (or |kn|)represents the 

magnitude of change along the direction m (or n). For example, km=-1 means 

that η1 is compressed along m by a factor of 2. Figure 15(b) shows the 

transformation from em-en space to km-kn space. Similarly to em and en, if km=0, 

kn is also equal to zero, and vice versa.  

We will use max(|km|,|kn|) as a measure of dissimilarity (ϖ) between η1  

and η2: 
 
 

                            (47) 

 
 

Figure 15(b) illustrates the relation between ϖ and (km, kn). If a point (km, 

kn) falls in the yellow area, ϖ= kn. If it falls in the cyan area, ϖ= kn. The  

dissimilarity measure ϖ(η(α1),η(α2)) has the following properties: 
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1. ϖ(η(α1),η(α2))=0 iff the two shapes η(α1) and η(α2) are identical 

except for a depth reversal. This happens when |α1|=|α2| (the slants 

of the symmetry planes of η(α1) and η(α2) are the same). 

2. ϖ(η(α1),η(α2)) = -ϖ(η(α2),η(α1))   

3. ϖ(η(α1),η(α2)) = ϖ(η(90-α1),η(90-α2))   

4. ϖ(η(I,Ξ)(α1),η(I,Ξ) (α2)) = ϖ(η(I’,Ξ’)(α1),η(I’,Ξ’) (α2)). This property 

states that given any image and/or any symmetric 

correspondences, if the α’s of two recoveries are known, the 

dissimilarity is known. In other words, the dissimilarity is  

 independent of shape. 
 
 

It is customary in studies of shape to express shape differences using aspect 

ratios, rather than the log of aspect ratio. The conversion of ϖ to aspect ratio  

can be done as follows: 
 
 

ε(η1,η2) = |2ϖ(η1,η2)-1|                                                  (48) 
 
 
Now that we have a formal way to measure the dissimilarity between two 3D 

shapes, we can evaluate the accuracy of 3D shape recovery by the model and 

by the subject. We begin with testing the model. 

Simulation 

We randomly generated 3D abstract polyhedrons like those shown in 

Figure 16. Every polyhedron had 16 vertices. Their positions were randomly- 

generated in 3D space with the following constraints: 
 
 

1. The object had planar faces; 

2. The “front” part of the object was a box that was smaller than 

the box in the “back” (refer to Figure 16(a) for the illustration) 

and these boxes had a pair of coplanar faces;   
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                  (a)                                (b)                                (c) 

 

Figure 16

 

. An illustration of polyhedra used for the simulation. The aspect ratio 

for each shape (from left to right) is: 1/3, 1 and 3. 
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3. The aspect ratio of the polyhedron varied between 1/5 and 5. 

The aspect ratio of a polyhedron was defined as the ratio of 

the thickness along two directions – one was the normal of its 

symmetry plane and the other was the normal of the coplanar 

face of the two boxes (see Figure 16(b)). The aspect ratios of 

the three polyhedrons in Figure 16 are 1/3, 1 and 3, 

respectively;   

4. The overall size of the generated polyhedron was increased 

or decreased to fit a cube whose edge length was 10cm. In 

other words, the maximum length along X, Y or Z axis was 10 

cm. The directions of X, Y and Z were defined relative to the 

observer: Z represents the direction in depth, the X axis is  

 horizontal and the Y axis is vertical. 
 
 

The slants of the symmetry plane ranged from 5 to 84 degrees with a step of 

one deg. Each slant was used 10 times. Totally, 800 polyhedra were 

generated. We recovered the 3D shapes using the monocular model. The 

averaged dissimilarity (ϖ) between the recovered and the original 3D shape for 

each slant was computed. The result is shown in Figure 17 (the blue curve). 

The abscissa represents the slant. The ordinate on the left represents the 

dissimilarity (ϖ) and that on the right represents the corresponding error in 

aspect ratio (ε). The simulation result shows that the model’s performance is 

affected by the slant of the original shape. Specifically, the performance curve 

is an inverted U shape. When the slant is close to 45 degrees, the performance 

is better and the recoveries by the model are close to the original 3D shapes. 

When the slant is close to zero or close to 90 degrees (degenerate views), the 

performance is quite poor. We will call this relation the “slant effect.”   

Next, we applied our binocular model for three viewing distances: 50cm, 

200cm or 800cm. The performance curves for different viewing distances are 

shown in Figure 17. Similarly to the monocular performance, the binocular  
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Figure 17

 

. The monocular and binocular performance simulated by our models. 

The abscissa represents the slant of the real 3D shape. The ordinate on the left 

represents the dissimilarity (ϖ) between the recovered 3D shape and the 

original 3D shape and that on the right represents the corresponding error of 

aspect ratio (ε). 
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performance shows the slant effect, except that the magnitude of the effect is 

generally smaller. The magnitude of the slant effect increases when the 

viewing distance increases. Note that for the close viewing distance (50cm) the 

slant effect is extremely small, which means that the 3D shape recovery is 

always very close to veridical. 

To summarize, in this section, we first presented a monocular model 

that is based on four simplicity constrains (symmetry, planarity, maximum 

compactness and minimum surface area). In the simulations, abstract 

polyhedrons, which include 16 vertices, were used. The result shows that when 

the slant of the symmetry plane of the polyhedron is close to 45 deg, the 

recovery is close to perfect. In the case of degenerate views (slant close to 0 or 

90 deg), the monocular performance is poor. However, the model only made 

errors in one of the 15 parameters that characterize the 3D shape. This allows 

us to say that the 3D shape recovered by the model is always quite accurate. 

In the binocular model, which uses the information about depth order between 

points provided by stereoacuity, the 3D recovery is substantially better. 

Simulation results show that the binocular performance has a similar pattern as 

the monocular performance, which will lead to the continuity of percept when 

the viewing distance is changing. In a sense, the binocular model bridges 

monocular and binocular 3D shape perception. It is interesting to point out that 

a combination of the symmetry constraint (which is a non-metric constraint) 

and depth order information (which is also non-metric) produces a very good 

approximation to the metric shape. 

Next, two psychophysical experiments are presented. These 

experiments measured human performance in 3D shape recovery. This 

performance was compared to the performance of our models.  
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PSYCHOPHYSICAL EXPERIMENTS 
 
 

Experiment 1: Human’s Performance in a 3D Shape Recovery 

Task − Fixed Depth, Varying Viewing Directions 

In this experiment we tested the subject’s binocular and monocular 

recovery of 3D shape. We also tested the subject’s 3D shape recovery from 

motion parallax. In this condition, the images for the left and right eyes from the 

binocular test were presented successively to one eye.  

Four subjects (MY, YL, ZP, ZS) participated this experiment. All subjects 

had normal or correct-to-normal vision. MY and ZS were naïve about the 

purpose of the experiment.   

Subject 

The polyhedral shapes were generated the same way as in the 

simulation experiment. Five slants of the symmetry plane of the polyhedra were 

used: 15, 30, 45, 60 or 75 degrees. Abstract shapes, rather than shapes of 

common objects, like chairs, couches or animal bodies, were used to make it 

possible to compare our model’s performance with the performance of human 

observers. Human observers must be tested with abstract shapes to avoid 

familiarity confounds (Pizlo & Stevenson, 1999; Chan et al., 2006). Obviously, 

our model, which has no provision for “learning”, is not subject to this problem. 

For the model all stimuli are novel, including those familiar to humans. 

Common objects could be used with the model, but this would make it 

impossible to compare human and the model performance. 

Stimuli 

Using OpenGL and shutter glasses, we set up a virtual reality system. 

Two slightly different images (stereoscopic images) for the subject’s left and 
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right eyes were generated according to the subject’s interocular distance. They 

were presented on a CRT display at the same rate as the refresh rate of the 

display. The subject viewed these images through shutter glasses that were 

synchronized with the display so that each eye received the image designed 

for this eye, only. For example, when the left glass was transparent and the 

right glass was opaque, the image for the left eye was shown. And when the 

right glass was transparent and the left glass was opaque, the image for the 

right eye was shown. When the refresh rate is high, the subject cannot 

perceive flicker and the two images are fused. In the experiment, the refresh 

rate was set to 100Hz. Thus, the image for each eye was updated at the rate of 

50Hz.The size of the computer screen was 40 cm by 30 cm and the resolution 

was 1280 pixels by 1024 pixels.  

The simulated viewing distance (i.e. the distance between the subject’s 

eye and the center of the simulated polyhedron) and the distance between the 

subject and the monitor were the same and equal to 50cm.  

The subject viewed the images through the shutter glasses in a dark 

room. His/her head was supported by a chin-forehead rest. Two polyhedra 

were presented side by side and the separation was 13.3cm (see Figure 18). 

They were at the same level as the subject’s eyes. On the left, the reference  

Procedure 

shape was presented under three viewing conditions: 
 
 

1. Binocular viewing. The stereoscopic images of a stationary 

polyhedron were presented; 

2. Monocular viewing. Subjects viewed one image of a 

stationary polyhedron monocularly. Specifically, when the left 

glass was transparent, the image for the left eye was 

presented. When the right glass was transparent, no image 

was presented and the screen was black.   
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Figure 18

 

. The illustration of the experimental setup. Two polyhedral shapes 

were presented side by side and the separation was 13.3cm. The simulated 

viewing distance was 50cm for both shapes. 
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3. Motion parallax. The images for the left and right eyes from 

the binocular viewing were presented alternately to the  

 subjects’ left eye at a rate of 2.5Hz.   
 

 
On the right, a rotating 3D polyhedron was shown and subjects viewed it 

monocularly. This rotating polyhedron was selected from the family of 

symmetrical 3D shapes generated by our model (refer to equations (15) or 

(16)). Relative to the reference 3D shape, the orientation of the adjusted 3D 

polyhedron was first changed by 45 deg around the X axis first. The resulting 

polyhedron was then rotated around the Y axis at 80 degrees/second. This 

essentially guaranteed that none of the 2D images of the rotating polyhedron 

were identical to the images of the reference polyhedron (the viewing directions 

of the reference and the adjusted 3D shapes were different). This minimized 

the possibility that the subject used 2D features to produce a correct response. 

Viewing a rotating 3D polyhedron allowed many different views of the 3D 

shape to be seen in a short amount of time. The subject used a mouse to 

adjust the only parameter (α) to change the aspect ratio of the 3D shape until 

the adjusted 3D shape matched the percept of the 3D shape produced by the 

polyhedron shown on the left. To further minimize the effect of 2D artifactual 

cues, the average size of the 3D polyhedron on the right was 70% of the one 

shown on the left. At the start of each trial, α was set to a random value. There 

was no time limit for the adjustment.  

There were two sessions for each condition and each session included 

50 randomly generated polyhedra. Each slant (15, 30, 45, 60 or 75 degrees) 

was used 10 times in each session. On average, each session took about 20 

minutes.  

For each trial, we computed the dissimilarity between the subjects’ 

adjusted 3D shape and the original 3D shape. First, we computed the average 

dissimilarity for each condition (see Figure 19(a)). The binocular performance  

Results 
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( a) 

 
                                 (b)                                                       (c) 

 
                                    (d)                                                      (e) 

 

Figure 19. The dissimilarity between subjects’ adjusted 3D shapes and the 

reference 3D shapes. (a) The subjects’ average performance across the three 

viewing conditions. (b) (c) (d) and (e) individual subjects’ performance for the 

three viewing conditions and for different slants. 
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was the best, the motion parallax performance was second best and the 

monocular performance was the worst. This pattern was consistent across all 

four subjects. The average dissimilarity between the adjusted 3D shape and 

the original 3D shape for the three viewing conditions were -0.102, -0.397 and -

0.229. The corresponding perceptual errors (refer to equation (48)) were 7%, 

26% and 15%. 

Next, we plotted the subjects’ performance for each slant. Figures 18(b)-

(e) show the four subjects’ performance. The pattern of results is quite similar 

across the subjects. Interestingly, performance of the two naïve subjects (MY, 

ZS) is not worse (and may be better) than that of the other two subjects. For 

each viewing condition, the performance tended to be best when the slant of 

the symmetry plane was 45 degree - the dissimilairty was close to 0 and the 

standard error was smallest. When the slant was far from 45 degrees, the 

performance tended to be worse. Note the inverted U pattern of results in all 

viewing conditions and all subjects (except binocular viewing of MY). This 

pattern is similar to that observed in the model simulations. In a control 

experiment, YL and ZP ran the binocular session for an additional three 

viewing distances: 100, 200 and 300 cm. On average, their perceptual error in 

recovering aspect ratio of a 3D shape increased from 11% at 50cm distance to 

16% at 300cm distance. This moderate increase in recovery error is consistent 

with performance of the model shown in Figure  16. 

Next, we evaluate the model’s performance in binocular and monocular 

conditions using the same stimuli that the subjects viewed. 

For each trial, a 3D shape was recovered by our model and it was 

compared with the reference 3D shape. Because we do not have a separate 

recovery model for the motion parallax condition, we only simulated the 

subjects’ monocular and binocular performance (see Figure 20). 

Computationally, our binocular model could also be used as a model for motion 

parallax condition with two images. The model’s binocular performance  

Stimulation 
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                                                                 (a) 

 
                                  ( b)                                                      (c) 

 
                            (d)                                                              (e) 

 

Figure 20

 

. The performance simulated by our models. (a) The performance 

averaged across different slants. (b)-(e) The performance for each slant. 



www.manaraa.com

57 

improves due to the depth order information provided by stereoacuity. Motion 

parallax provides equally good depth order information, so the benefit of adding 

the second image is expected to be similar in binocular and motion parallax 

conditions. This was roughly the case in our psychophysical experiment (see 

Figure 19). 

The monocular recovery by the model was very similar to the 

psychophysical results (compare the graphs in Figures 17 and 18). The same 

was true for binocular recovery. However, the binocular performance by our 

model was slightly better than the subjects’ performance. This is not surprising 

considering that our model simulated only one type of visual noise that is 

present in the human visual system, namely the noise represented by 

stereoacuity threshold. There are other sources of noise. For example, the 

human visual system has a limited discrimination ability in judging 3D aspect 

ratios. If we use a 3% Weber fraction for line length discrimination on the 

frontal plane (the Weber fraction is surely larger in 3D space) then comparing 

two aspect ratios will lead to threshold of at least √2 times 3%. This additional 

noise alone may be able to account for the difference between the subject’s 

and the model’s binocular performance. There are, however, other sources of 

variability. Our binocular model uses all pairs of points whose depth order can 

be judged. There are up to N2 such pairs, for N visible vertices. It is very likely 

that due to the limitations of visual attention, the human observer uses only a 

subset of these pairs of points. Finally, note that when we computed the 

threshold of stereoacuity, we adopted Rady & Ishak’s (1955) results. In their 

experiments, they measured the stereoacuity between points without any 

context. There have been reports that when an arbitrarily curved surface is 

used as context, the stereoacuity threshold increases (Norman & Todd, 1998). 

It is an open question as to whether stereoacuity is affected by the presence of 

a symmetrical shape.  

The comparison between the subjects’ perceived 3D shapes and the 

recovered 3D shapes by the models is shown in Figure 21. The average  
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(a) 

 
(b)                                              (c) 

 
(d)                                             (e) 

 

Figure 21. The dissimilarity between the subjects’ perceived 3D shapes and 

the recovered 3D shapes by our models. (a) The dissimilarity averaged across 

different slants. (b)-(e) The comparison for different slants. 
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dissimilarity between subjects’ percept and the recovery by the models was 

close to 0 for three of the four subjects (see Figure 21(a)). More importantly, 

the dissimilarities between the perceived shapes and recovered shapes are 

almost always smaller than the dissimilarities between the perceived shapes 

and the original shapes. This is especially clear in the case of monocular 

viewing (in binocular viewing both the subjects and the model produced close 

to perfect recovery). This means that our models can indeed explain to some 

degree the 3D shape percept. The same conclusion is generally true in the 

case of the comparison for individual slants (Figure 21 (b)-(e)). Only in a few 

cases the errors are not close to zero. For example, when the slant of the 

symmetry plane is 15 deg (the lateral surfaces of a symmetric 3D shape are 

facing the subject), the dissimilarity between the percept and the recoveries for 

YL and ZP (the non-naïve subjects) is greater than 0 for both monocular and 

binocular viewing conditions. This suggests that these subjects perceived more 

depth compression along the normal of the symmetry plane than the models. 

The fact that the other two subjects showed smaller dissimilarities, suggests 

that large differences between the model and the subject could be due to 

idiosyncratic factors, whose explanation is beyond the scope of this 

dissertation.  

Our psychophysical results show that the slant effect existed for all three 

viewing conditions, which implies that 3D shape perception in monocular 

vision, binocular vision and motion parallax probably involves the same 

mechanism. Performance of our models when they were applied to the same 

images was quite similar to the subjects’ performance. This fact suggests that 

our visual system and our models use the same method to recover 3D shapes: 

(1) subjects and the models perceive the 3D shape with maximum V/S3; (2) 

binocular vision helps determine the depth order between points and this extra 

information limits the size of the set of possible 3D interpretation and 

consequently improves performance. 

Discussion 
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Our psychophysical results show that the performance in the motion 

parallax condition was better than that in the monocular viewing condition. This 

suggests that the second image provides some extra information that limits the 

size of the set of possible 3D interpretations, like what binocular disparity does.  

To summarize, the subjects’ performance was similar to the prediction of 

our models. In addition, our psychophysical results suggest binocular shape 

perception is almost veridical. This result is different from the conclusions of 

many other studies. That used either degenerate viewing conditions or 

degenerate objects. In one of the most representative studies, Todd & Norman 

(2003) had the subject view two pyramids at different distances. Both pyramids 

were viewed from their top (Figure 22(a) illustrates the viewing direction and 

Figure 22(b) shows the stereoscopic images). The subject was asked to adjust 

the height of one pyramid to match the aspect ratios of the two pyramids. They 

found that the subject’s percept was not accurate. Specifically, when the 

adjusted pyramid was farther than the reference, the adjusted height was 

systematically greater than veridical height. This result represents compression 

of the perceived depth. The perceptual error was up to 25%. Based on this 

result, the authors concluded that the binocular 3D shape perception is not 

veridical.  

Clearly, Todd & Norman’s conclusion about binocular shape perception 

is quite different from ours. We repeated Todd et al.’s experiment. We also 

repeated our Experiment 1 under slightly modified viewing conditions, to make 

the comparison as direct as possible. 

Experiment 2: Human’s Performance in 3D Shape Recovery Task: 

Different Depths, Same Viewing Directions 

Four subjects (YL, ZP, ZS, ZX) participated in this experiment. All 

subjects had normal or corrected-to-normal vision. ZS and ZX were naïve 

about the purpose of the experiment.  

Subjects 
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( a) 

 
                                                              (b) 

 

Figure 22

 

. The illustration of a pyramid used in experiment 2. (a) The pyramid 

was viewed from its top. (b) The stereogram (for crossed fusion) of the pyramid 

when it was viewed from the top. 
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The polyhedra were generated the same way as in Experiment 1. In 

addition, pyramids similar to those Todd & Norman (2003) used were 

generated (see Figure 22). The bottoms of the pyramids were rectangular and 

they were perpendicular to the visual axis. The size of each pyramid was 

scaled so that it fit inside a cube whose edge length was 10cm. 100 pyramids 

with random shapes were generated.  

Stimuli 

Subjects viewed the image through the shutter glasses in a dark room 

and their heads were supported by a chin-forehead rest. The distance between 

the display and the observer was 100cm. Two 3D shapes –the adjusted and 

the reference shapes were displayed side by side. The adjusted 3D shape was 

right in front of the observer and the viewing distance was 125cm. The 

reference 3D shape was on the left. Relative to the adjusted 3D shape, it was 

moved 13.3cm to the left and 50cm closer to the observer. Finally, it was 

rotated 10.06 degrees around the Y axis, which was the angle formed by the 

centers of the two shapes and the observer’s cyclopean eye (see Figure 23). 

This rotation guaranteed that the reference and the adjusted 3D shapes were 

viewed from the same direction. These viewing conditions (same 3D viewing 

orientation and different viewing distances) resembled closely the viewing 

conditions used in prior studies of binocular depth and shape constancy. 

Procedure 

There were four viewing conditions for the reference 3D shape on the 

left. The first three were the same as the conditions in Experiment 1: (1) a 

polyhedron was viewed binocularly; (2) a polyhedron was viewed monocularly; 

and (3) the two images from the binocular condition were presented alternately 

to the subjects’ left eye (motion parallax). The slant of the symmetry plane was 

15, 30, 45, 60 or 75 deg. In the fourth condition, the pyramid was viewed from 

its top binocularly. That is, the viewing direction coincided with the height of the 

pyramid (see Figure 23).  
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Figure 23

 

. A schematic diagram of the viewing configuration used in 

Experiment 2. The distance between the display and an observer was 100cm. 

The adjusted object was right in front of the observer and the viewing distance 

was 125 cm. The reference 3D shape was on the left. Related to the adjusted 

3D shape, it was moved 13.3cm to the left and 50cm closer to the observer. 

The angular separation between the reference and the adjusted 3D shapes 

was 10.06 degrees. 
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The adjusted 3D shape on the right was stationary and it was viewed 

binocularly. In the case of the first three viewing conditions (binocular, 

monocular and motion parallax), the task was similar to that in Experiment 1. 

Specifically, the subject used a mouse to adjust the parameter (α) to change 

the 3D shape until the adjusted 3D shape matched the reference 3D shape on 

the left. In the beginning of each trial α was set to a random value. In the fourth 

viewing condition, the subject’s task was identical to that in Todd & Norman 

(2003) study. Namely, the subjects were asked to change the height of the 

adjusted pyramid until its aspect ratio matched the aspect ratio of the reference 

pyramid on the left. Note that because the pyramids were viewed from a 

degenerate viewing direction, the new binocular model described above cannot 

recover its shape. The reason is that the one-parameter family of symmetric 

pyramids contains the pyramids that are different from one another by a pure 

stretch along the depth direction. This stretch does change the depth order of 

any pairs of points. It follows that the subject in this task will be forced to use 

depth perception in matching 3D shapes. Depth matching is not needed in any 

of the other three conditions. 

There were two sessions for each condition and each session included 

50 randomly generated polyhedral or pyramids. For the binocular, monocular 

and motion parallax conditions, the slant of the reference 3D shape was 15, 30, 

45, 60 or 75 degrees and each was used 10 times in each session.  

The average performance for each viewing condition is shown in Figure 

24(a). The binocular performance with polyhedra was the best. The binocular 

performance with pyramids and monocular performance with polyhedra were 

the worst. The average dissimilarity between the adjusted 3D shapes and the 

reference 3D shapes were 0.085, -0.346, -0.043 and 0.365 for binocular, 

monocular, motion parallax and pyramid, respectively. When the dissimilarity is 

expressed as percentage error in adjusting aspect ratios, the average errors for 

the four conditions were 6%, 21%, 3% and 29%. Note that this is a systematic  

Results 
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                                                              (a) 

 
                         ( b)                                                       (c) 

 
                        ( d)                                                        (e) 

 

Figure 24. The subjects’ performance for the four viewing conditions. (a) The 

average performance across the slants. (b)-(e) the subjects’ performance for 

each slant in the three polyhedral conditions. 
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error. The large errors in monocular performance with polyhedron (21%) and 

binocular performance with pyramids (29%) mean that the 3D shape percept 

for these two conditions was substantially biased. Note that binocular viewing 

of a pyramid from a degenerate view led to worse performance than monocular 

viewing of a polyhedron from a non-degenerate view. This illustrates that 

binocular depth perception is quite unreliable. This contrasts with the nearly 

perfect performance in shape perception of a polyhedron under motion parallax 

and binocular viewing, where the errors were close to 0 (3% and 6%). The 

average standard deviation across the subjects for the motion parallax 

condition (0.189) was substantially higher than that for the binocular viewing 

condition (0.066), which suggests that binocular performance was overall 

better than motion parallax performance. 

In the case of the monocular and binocular conditions, the magnitude of 

the systematic error was consistent across the four subjects. However, the 

individual variability was quite large for the motion parallax and pyramid 

conditions.  Similar variability for the case of the pyramid condition was 

reported by Todd and Norman (2005). 

Next, we plotted the subjects’ performance for the three polyhedron 

conditions, as a function of the slant of the symmetry plane (see Figure 24(b)-

(e)). Similarly to Experiment 1, monocular performance was quite good for 

slants 30-60 deg. For slants 15 and 75 deg performance was clearly worse. In 

the case of motion parallax, we could also observe the slant effect. However, 

the effect was much smaller than that in Experiment 1. In the case of the 

binocular performance of the polyhedra, the slant effect disappeared 

completely. The disappearance of the slant effect in Experiment 2 is not difficult 

to explain. Note that because the adjusted and reference 3D shapes were 

viewed binocularly from exactly the same viewing directions, the percept for the 

adjusted 3D shape should show the same slant effect as the percept of the 

reference 3D shape (the effect was not exactly the same because the viewing 

distances of the reference and adjusted 3D shapes were not the same; with 
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different viewing distances, the depth order matrices were slightly different). As 

a result, the two biases cancelled out. The slant effect for the monocular and 

motion parallax conditions are also expected to be smaller: the slant effect 

measured in Experiment 2 should be equal to the slant effect from Experiment 

1 minus the binocular slant effect.  

We conclude by pointing out that it is better to measure the shape 

percept by asking the subject to view the 3D shape from different viewing 

directions, as was done in Experiment 1. Using identical viewing directions is 

less than ideal. In fact, the only way to evaluate the degree of shape constancy 

is to use different viewing directions. Unfortunately, this is not how the 3D 

shape was studied in the past. Next we will simulate the processes for 

binocular and monocular performance. 

Suppose that the reference 3D shape is ηR and the 3D shape recovered 

by the binocular model is ηR’ when ηR is viewed from the distance of 75cm (the 

distance of the reference 3D shape in Experiment 2). Suppose next that the 

adjusted 3D shape is ηA and the 3D shape recovered by the binocular model is 

ηA’ when ηA is viewed from the distance of 125cm (the distance of the adjusted 

3D shape). If ηR’ is the same as ηA’, ηA and ηR will be perceived by the model 

as the same 3D shape.   

Stimulation 

Further, suppose that the set of all 3D shapes in the one-parameter 

family produced by the 2D cyclopean image of the 3D adjusted shape is ψ. For 

each 3D shape ηi in ψ, its recovered ηi’ is computed and compared with ηR’. 

From equation (32), it is known that there is a range of ηis, whose recoveries 

are all identical to ηR’. In other words, small changes of the aspect ratio of the 

adjusted 3D shape will not change the 3D percept. Because these adjusted 3D 

shapes are perceptually equivalent, which means that they are perceived as 

the same 3D shape as that when ηR is viewed binocularly, we randomly chose 

one 3D shape among them to simulate the subjects’ adjustment.  
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For the monocular performance, the simulation is done similarly. 

Suppose the reference 3D shape is ηM and the 3D shape recovered by the 

monocular model is ηM’. Then in the set of 3D shapes for the adjustment, we 

obtain the subset that are perceived as ηM’. In this subset, we chose one 

randomly to simulate the subjects’ adjustment.  

The dissimilarity between the 3D shapes adjusted by the model and the 

real 3D shapes was computed. Figure 25(a) shows the performance averaged 

across the five slants. Since the model was applied to the images that were 

actually used in the psychophysical experiments, the model’s performance is 

slightly different across the four subjects simply because different subjects 

were tested with different, randomly generated stimuli. The pattern and 

magnitude of errors are similar to the subjects’ performance shown in Figure 

24. Figure 25(b)-(e) shows the simulation results for different slants. The slant 

effect for the binocular condition disappeared as was the case in the 

psychophysical results shown in Figure 25.  

In the psychophysical experiment, we repeated Todd & Norman’s (2003) 

experiment with pyramids viewed from degenerate viewing directions and we 

replicated their results – the percept of the pyramid viewed from a degenerate 

viewing direction was not accurate and when the adjusted 3D pyramid was 

farther than the reference pyramid, the adjusted height was larger than the 

height of the reference pyramid, suggesting depth compression.  

Discussion 

However, binocular performance with polyhedral objects viewed from 

non-degenerate viewing directions was much better. The average perceptual 

errors were less than 10%. What is responsible for the difference? We think  

that there are two factors:  
 
 

1. In the previous studies of 3D shape perception, the subject 

was usually asked to view the 3D shape from a degenerate 

view. For example, the subjects in Todd & Norman’s  
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                                       (d)                                       (e) 

 

Figure 25. (a) Performance of the model averaged across the five slants. (b)-

(e) the binocular and monocular performance for different slants. 
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 experiment viewed the pyramid from its top. Our simulation 

results showed that binocular performance was worst when 

the slant of the symmetry plane was close to 0 or 90 degrees 

(see Figure 17). Note the slants of both symmetry planes of 

the pyramids used in Todd & Norman’s (2003) experiment 

were 90 degree. For the degenerate view, the possible 3D 

interpretations were those produced by stretching the original 

3D shape in depth. All pyramids in this family have the same 

depth order. Therefore, the contribution of stereoacuity is very 

limited, if any. The subjects have to make their judgment 

based on the distance between points in the depth direction. 

It is known that human’s depth perception from binocular 

disparity is quite poor. Therefore, perceiving a 3D shape from 

its degenerate view cannot be veridical. 

2. The objects used in previous studies of 3D shape perception 

were quite simple, like a cylinder, or a pyramid. According to 

our model, a simple 3D shape has a small depth order matrix, 

which suggests fewer limitations on the perceived 3D shape. 

Usually, small depth order matrix will lead to a large set of 

possible 3D interpretations and consequently will result in  

 poor performance.   
 

  
These two factors suggest that the following two conditions should be satisfied 

in order to perceive a 3D shape veridically – (1) the 3D shape should be 

complex and (2) it should be viewed from a non-degenerate view. These two 

conditions are almost always satisfied in everyday life.  
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SUMMARY AND CONCLUSIONS 
 
 

In this dissertation, we presented two models to simulate human 

monocular and binocular 3D shape perception. The monocular model is based 

on simplicity constraints – symmetry, planarity, maximum compactness and 

minimum surface area. A recovery by the model usually includes three steps. 

Given a 2D image, we first apply the symmetry constraint to limit its possible 

3D interpretation to a set that is determined by one free parameter. Then by 

applying the planarity constraint, we compute the hidden part of those 3D 

shapes. Finally, we combine the maximum compactness and minimum surface 

area constraints and choose a unique 3D shape in the set. This last step is one 

of the original contributions of our work: no one used these two constraints in 

3D shape recovery before. Why should these two constraints be combined and 

why does the combination lead to a good recovery? We can  

answer this question from two perspectives. 
 
 

1. Koffka (1935) pointed out that human 3D shape perception is 

a compromise between a simplicity principle and the 2D 

image. He interpreted the tendency toward the simplest 

possible shape as an external force and the retinal stimulus 

pattern an internal force. Recently, Griffiths & Zaidi (2000) 

used this idea to suggest that the perceived tilt of a 3D 

surface is a compromise between the 2D image of the 

surface and perceptual assumptions (a priori constraints). 

Our model provides a more direct application of Koffka’s two-

force mechanism to 3D shape. Namely, the maximum 
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compactness constraint represents the external force 

implementing the 3D simplicity constraint, and the minimum 

surface constraint represents the internal force. The minimum 

surface area can be viewed as the internal force because the 

lower bound on the surface area of a 3D shape is the surface 

area of the 2D image itself. 

2. The combination of these two constraints is similar to the 

Bayesian process. Many scientists consider human vision as 

an information processing system, whose output is 

determined by the input (the 2D image in the case of 3D 

shape percept) and the built-in structure (the priors). A 

Bayesian model uses a combination of the prior and the 

likelihood to produce an optimal output (decision). The 

minimum surface area constraint, which leads to the most 

likely 3D interpretation, represents the likelihood function and 

the maximum compactness constraint represents the prior 

distribution function. Therefore, the combination of these two 

constraints is similar to the Bayesian process in which a 

maximum posteriori estimate is taken as an optimal  

 estimation (Knill & Richards, 1996).   
 

 
Consider now the binocular model. Previous studies of binocular depth 

perception showed that binocular vision is poor at judging the depth distances 

between points, but very good at determining their depth order(Blakemore 

1970; Westheimer 1979; Westheimer & McKee, 1980). Combining the ordinal 

depth from binocular vision and the monocular shape recovery, we proposed a 

binocular model. When we view a 3D shape binocularly, the depth order 

information provided by stereoacuity limits the recovered 3D shape to a small 

set. Among the 3D shapes in the set, the model chooses the one that has the 
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maximum V/S3 (the combination of maximum 3D compactness and minimum 

surface area constraints). 

In Experiment 1, we measured the subject’s performance and compared 

it with the performance of our model. We found that the subject’s results were 

consistent with the prediction of our models: (1) both subjects’ monocular and 

binocular performance show a slant effect; (2) the binocular 3D shape 

perception is close to veridical. The second of these two results is new; it is 

different from the results of most of the previous studies, in which the binocular 

3D shape perception was reported to be highly inaccurate. Our further study 

(Experiment 2) revealed that the poor binocular performance reported in the 

past was due to the following two factors (1) in the prior studies the subjects 

were shown degenerate views of the 3D shape and/or (2) the objects were too 

simple. The difference between our results and the results of previous studies 

can be well accounted for by our model.  

The consistency between the model performance and the subject’s 

performance shows that our models of 3D shape perception are 

psychologically plausible. It suggests that the simplicity constraints play an 

important role in 3D shape perception and it also reveals the role of binocular 

vision in 3D shape perception.  

Our models are not the first attempt to recover a 3D shape from 2D 

image(s). For example, a triangulation method is often used to recover a 3D 

shape from its several views (Hartley & Zisserman, 2003). The reliability of this 

method, however, strongly depends on the accuracy and precision with which 

the positions of points in images are measured. Chan et al.’s experiments 

(1999) showed that even a very small amount of noise in the images lead to 

large errors in the recovery. Such instability is absent in human 3D shape 

perception and in our binocular model. This means that the triangulation 

method is not as good as our new model, and furthermore that the triangulation 

method is not a good model of human shape perception.  
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Note that our current models have several limitations. Before they 

become general models of human shape perception, several of its aspects 

have to be further developed: 

How to Recover a 3D Shape From a 2D Perspective Image? 

In our daily life, the retinal image is a perspective projection of the 3D 

world. Our model, however, uses orthographic images. Orthographic projection 

is a good approximation to perspective projection when the size of a 3D shape 

is very small compared to the viewing distance. Can we recover a symmetric 

3D shape from a perspective image? The answer is yes. If (1) the center of 

perspective projection is known (i.e. the camera is calibrated) and (2) the 

vanishing point of the lines connecting the symmetric points can be reliably 

estimated, the 3D shape can be recovered uniquely (refer to the Appendix D). 

Because of noise in an image, usually the estimate of the vanishing point is not 

accurate, especially when the vanishing point is very far from the center of the 

image.  However, in such cases, the perspective distortions are small and can 

be ignored. In other words, the orthographic approximation is likely to be good 

enough. 

How to Detect the 3D Symmetry? 

In this study, we assumed that all symmetry correspondences in an 

image have been established before applying our model. Sawada et al. (2009) 

proved that any two curves in an image can be a projection of a pair of mirror 

symmetric 3D curves. Obviously, our visual system does not interpret every 

image as representing a 3D symmetric configuration. We speculate that the 

planarity constraint plays an important role in symmetry detection. Only when a 

3D curve is on a plane, the projections of this curve and its symmetric 

counterpart will be considered as the projections of symmetric curves by our 

visual system. From Appendix A, we know that the projections of these two 

curves are subject to an affine transformation. Therefore, we can detect the 

symmetry by checking whether they are related by an affine transformation.  
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How to Find 3D Shapes in an Image? 

So far, we only recover one 3D shape at one time. However, usually an 

image includes many 3D shapes. How to find them is essential for shape 

recovery. The method of detecting symmetry proposed above probably 

provides one way to solve this figure-ground organization problem. We can 

compare all curves in an image and see whether they can be interpreted as 

symmetric and at the same time, we can obtain the direction of the lines 

connecting the symmetric pairs (i.e., the tilt of the symmetry plane). Those 

curves with the same tilt will be grouped as an object.  

The three aspects briefly discussed above are important for the 

application of our models to real images of real scenes. A lot remains to be 

done, but the models presented in the dissertation are a good starting point. 
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Appendix A. Orthographic Projections of Two Planar Curves Related by 
Reflection are Related by a 2D Affine Transformation 

 

 
 

Figure 26. The relations analyzed in this appendix. 

Suppose that the symmetry plane is  

πS: aX+bY+cZ+d =0                                                  (A1) 

and A is a point on another plane 

π: eX+fY+gZ+h=0                                                     (A2) 

and its coordinates are [XA, YA, ZA]. Assume that π is not orthogonal to the 

image plane XY (this excludes degenerate views). It follows that g≠0. The 

symmetric point of A is A’ whose coordinate is [XA’, YA’, ZA’]. 

The points A and A’ are symmetric with respect to the symmetry plane πS if 

and only if they satisfy the following two conditions: 

(1) The midpoint of A and A’ is the on the plane πS.  

a(XA+ XA’)+ b(YA+ YA’)+ c(ZA+ ZA’)+d = 0                        (A3) 

(2) The line AA’ is perpendicular to the symmetry plane πS. 

[XA- XA’, YA- YA’, ZA- ZA’]×[a, b, c] = 0                          (A4) 

Note the 0 on the right-hand side of equation (A4) is written in bold font 

because 0 is a vector. The equation (A4) is equivalent to the following three 

equations: 

a(YA-YA’) – b(XA-XA’) = 0                                       (A5) 
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b(ZA-ZA’) – c(YA-YA’) = 0                                       (A6) 

c(XA-XA’) – a(ZA-ZA’) = 0                                      (A7) 

Note that equation (A7) is a linear combination of equations (A5) and (A6). 

Putting the three linear equations (A3), (A5) and (A6) together, we can write 

them as 

                     (A8) 

Let  

                                              (A9) 

Then the determinant of W is equal to 

 det(W) = b(a2+b2+c2)                                        (A10) 

If b is not equal to 0, then W is a full rank matrix and we can compute the 

inverse of W. Pre-multiplying both sides of A8 by W-1, we can express the 

coordinates of point A’ as 

   

(A11) 

Let 

 ,  

and , 

then equation (A11) can be simply written as 

V’=PV+T                                              (A12) 



www.manaraa.com

83 

Or 

                           (A13) 

Considering the first two rows, we obtain 

                        (A14) 

Because point A is on the plane π, from equation (A2), we obtain 

                                         (A15) 

Replacing ZA in (A14) with (A15), we obtain 

           (A16) 

Let 

 and , then equation (A16) 

can be simply written as 

                                 (A17) 

Equation (A17) indicates that [XA’, YA’] and [XA, YA] are related by a 2D affine 

transformation. Note, the [XA’, YA’] and [XA, YA] are 2D orthographic projections 

of A’ and A, and A’ and A are symmetric with respect to the plane πS. 

Therefore, orthographic projections of two mirror symmetric planes are subject 

to affine transformation. Note there are six parameters in equations (A17) that 

determine the 2D affine transformation. Three pairs of symmetric 

correspondences in the image plane will be enough to compute these 

parameters.  

If b is equal to 0 in equation (A10), from equation (A5) or (A6), we obtain 

YA = YA’                                            (A18) 

Combining equations (A2), (A3), (A7) and removing ZA and ZA’, we obtain 

XA’=kXA+mYA+n                                      (A19) 
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Where 

,  and                   (A20) 

Putting the two linear equations (A18) and (A19) together, we obtain 

                               (A21) 

Therefore, if b is equal to 0, [XA’, YA’] can be also written as a 2D affine 

transformation of [XA, YA].    
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Appendix B. Recovery From a Real 2D Image 

 

There are several differences between the recovery from a synthetic image, 

like the image of a polyhedron, and the recovery from a real image, like the 

image of a bird.  

1. An image of a polyhedron consists of line segments. For a line segment, 

we only need to recover its endpoints and the line segment can be 

recovered by connecting the recovered endpoints. In the case of a real 

image of a natural object, it is very unlikely that the curves on the image 

are straight. It follows that all points on each curve have to be 

recovered. Next, to apply our model to a real image, we need to extract 

curves from the image first. Detecting curves in a real image is itself a 

difficult problem. The human visual system solves it very well. However, 

there is still no algorithm that can find curves in real images, reliably. 

The problem of finding curves in a real image is outside the scope of this 

proposal. Our model has been be applied to curves in the image that 

have been extracted by hand.  

2. When we recover a synthetic polyhedron from its 2D image, the 

information about which points in the 3D interpretation are symmetric is 

given. Again, in the case of polyhedra, the correspondence of the 

endpoints is sufficient because straight-line segments in 3D are 

produced (reconstructed) simply by connecting reconstructed endpoints. 

The situation is different when curves, rather than line segments, are 

recovered. In the case of curves, we need to know symmetry 

correspondences for all points on the curve. This is done as follows. We 

mark (by hand) which two curves in the image are symmetric in the 3D 

interpretation. Then, we indicate the direction in the image of the line 

segment connecting any symmetric pair of points. Recall, that the line 

segments connecting symmetric points in the 3D shape project to 

parallel line segments in an orthographic image of the shape. It follows 
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that all corresponding pairs of points in the image share the same 

direction.  

3. In the case of polyhedra, the planarity constraint is always used 

because all faces of a polyhedron are planar. However, in the case of 

natural shapes, planarity is less common and is more difficult to 

establish. It follows that planarity will not be used as often. One 

implication of this fact is that the back, invisible part of the object will be 

more difficult to recover. 

4. Not all curves found in the image will be used to recover a 3D shape. If 

a curve does not have a visible counterpart or the curve is not planar, 

there may not be enough constraints to recover it.  

5. In the presence of noise, the line segments connecting images of 

symmetric points (symmetry line segments) are not exactly parallel. In 

such a case, there is no exact solution to the problem of 3D shape 

recovery. One way to remedy this problem is to correct the orientations 

of symmetry line segments before 3D recovery. This can be done by 

moving endpoints of each curve so that all symmetry line segments 

defined by the endpoints are parallel. Specifically, the endpoints are 

moved as little as possible (in the least squares sense) to make the 

symmetry line segments parallel. In the case of real images, noise is 

handled differently. Note that in the case of real images it is not known a 

priori which points are corresponding. The correspondence is 

established by using the direction of the symmetry line segments, which 

is indicated by hand. However, the noise on the curves in a real image 

could lead to spurious correspondences. This problem is illustrated in 

Figure 25. Consider the noisy curves in Figure 25(b). Note that both 

points, B and C are on a symmetry line segment emanating from point 

A. Point C leads to a spurious correspondence with point A. This 

problem can be eliminated by smoothing the curves (see Figure 25(d)).  

6. There are two kinds of symmetric curves that are symmetric to 

themselves. These curves have to be identified, because they are 
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recovered separately. The first is any curve on the symmetry plane. The 

mirror image of each point on the curve is the point itself. The second is 

a curve that intersects the symmetry plane. For each point on the curve, 

its corresponding point is on the same curve, but on the opposite side of 

the symmetry plane. These two kinds of curves will be recovered after 

all other curves have been recovered. 

7. For some shapes, like a chair, table, or spider, et al., it may be difficult to 

define their surface and volume. In fact, these objects do not have much 

volume. A small amount of volume may lead to unstable 3D recoveries 

when 3D compactness is maximized. Note, however, that these objects 

occupy a substantial amount of 3D space. Therefore, it is natural to 

compute their convex hulls and apply the maximum compactness and 

minimum surface area to the convex hull, instead of to the shapes 

themselves. 

 

To summarize, the operations on how to apply our model to real images of real 

objects are as below: 

1. Draw the contours in the image by hand. Indicate which curves are 

symmetric and which curves are on the same plane.   

2. Smooth the curves in the image. 

3. Indicate the direction of symmetry line segments and then compute all 

the correspondences. 

4. The symmetry constraint is applied to recover all symmetric points (up to 

one unknown parameter).  

5. The planarity constraint is applied to recover the hidden part (optional).  

6. Obtain the orientation of the symmetry plane and recover those curves 

that are symmetric to themselves. 

7. Compute the convex hull for each 3D interpretation within the one-

parameter family of 3D shapes. Find the value of α that maximizes V/S3.  

8. Recover 3D curves using the α obtained in the step 7.  
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Figure 27. The illustration of how to eliminate spurious symmetry 

correspondences by smoothing curves. (a) A pair of original symmetric curves 

in an image. The green line indicates the direction of a symmetry line segment. 

(b) An enlarged image for the area in (a) encircled by the blue circle. Points B 

and C, which are on the curve on the left, are both possible symmetric 

counterparts of point A. (c) The pair of symmetric curves after smoothing.  (d) 

An enlarged image for the area in (c) encircled by the blue circle. 
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Appendix C. Simulation of the Subjects’ Ability of Detecting the Depth Order 

Between Points 

 

Rady & Ishak (1995) measured 10 subjects’ stereoscopic acuity. In their 

experiment, subjects viewed two illuminated circular apertures binocularly – 

one was the reference target and the other was the test target. The separation 

between the reference target and test target was controlled and it could be 7, 

14, 25, 40 or 52 degrees. In each separation, the viewing distance of the 

reference target was fixed at 200cm. The viewing distance of the test target 

was changed and at each distance subjects were asked to judge which target 

was closer to the observer (see Figure 26). Then a psychometric curve 

between the response and the distance of the test target was obtained. The 

reciprocal of the standard deviation of the distribution of the response was 

used as the stereoscopic acuity at the corresponding separation. 

 
 

Figure 28. The apparatus Rady and Ishak (1955) used to measure human’s 

stereoscopic acuity. The viewing distance of the reference target was 200cm. 
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Table 1 in Rady & Ishak’s paper listed the averaged stereoscopic acuities 

across subjects for the different separation. Five stereoscopic acuities for 

different separations were measured in their experiment. To predict the 

stereoscopic acuity at the other separations, we drew a curve to fit the Rady & 

Ishak’s results (see Figure 27). The expression for the fitting curve was: 

k200 = 4.4/s +0.22                                                (C1) 

Where k is the stereoscopic acuity and s is the separation (expressed in cm) 

between the reference target and the test target. According to the definition of 

stereoscopic acuity, the standard deviation for the response distribution at the 

separation s is  

σ=1/k200                                                        (C2) 

or  

                                                    (C3)                                   

Note that we put a subscript 200 after k. This is because Rady & Ishak’s 

measure is for the viewing distance of 200cm. To derive the stereoscopic 

acuity at the other viewing distances, we need to know how the viewing 

distance affects the binocular disparity. From equation (26), we can derive  

∆d=δd2/I                                                                                          (C4) 

Equation (C4) indicates that for a given binocular disparity expressed in 

radians, the depth is proportional to the square of the viewing distance. 

Combining (C3) and (C4), the standard deviation, expressed in cm, at the 

distance d is  

                                               (C5) 

Therefore, when the viewing distance is d and the separation is s, the 

stereoscopic acuity is  

                                               (C6) 
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Figure 29. The stereoscopic acuity fitting curve for Rady and Ishak’s results. 

The X axis is the separation between the reference target and the test target. 

The Y axis is the stereoscopic acuity. 

Suppose Ai and Aj are two points, their viewing distances are di and dj and the 

separation between them is s. In our experiment, subjects can change their 

fixation as they wanted. Therefore, the averaged viewing distance for Ai and Aj 

is considered as the viewing distance.  According to equation (C5), we can 

compute the standard deviation of responses at the separation of s and the 

viewing distance of (di+dj)/2. 

 

To determine what subjects’ judgment of depth order between Ai and Aj is, we 

should know their detection threshold. Threshold is usually defined as the 

percentile at which the signal can be successfully detected at 75%.  We 

adopted this convention. If subjects can successfully tell the depth order 

between Ai and Aj at the rate of 75% or more than 75%, we assume that the 

subjects can tell the depth order. Otherwise, the depth order between Ai and Aj 
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is uncertain. Under the assumption of a normal distribution, the Z value that 

corresponds to 75% is 0.674. Therefore, the equation (27) can be written as  

                                             (C7) 
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Appendix D. The Recovery of a Mirror Symmetric 3D Shape From its 

Perspective Image 

 

Suppose c1 and c2 are the perspective projections of two 3D curves C1 and C2 

that are mirror symmetric, and O is the projection center. Thus, the recovery 

from c1 and c2 is equivalent to computing c1 and c2’s back projections that are 

mirror-symmetric with respect to some plane πs.  

 

 

Figure 30. O is the projection center and Z=1 is the image plane. c1 and c2 are 

two arbitrary curves on the image plane. Point V is the vanishing point on the 

image plane. 

Let the projection center O be the origin of the coordinate system and direction 

of the visual axis to be the z-axis. The image plane is perpendicular to the z 

axis. Without loss of generality, we assume that plane z=1 is the image plane 

πI (see Figure 28).  In a perspective projection, the lines connecting pairs of 

points (called corresponding points) in the image that are projections of pairs of 

symmetric points in 3D intersect at one point that is called the vanishing point. 

Let V(X0, Y0, 1) be the vanishing points on the image. Then, the points on c1 

and c2, which are on a line emanating from the vanishing point are pairs of 

corresponding points. Let the angle between x-axis and the line emanating 

from vanishing point be β (see Figure 28). Let  



www.manaraa.com

94 

v1: [X0+s(β)cos(β), Y0+s(β)sin(β), 1]                                       (D1) 

be a point on c1, where s(β) is the distance between v1 and the vanishing point 

V. Similarly, let 

v2: [X0+t(β)cos(β), Y0+t(β)sin(β), 1]                                   (D2) 

be a point on c2, where t(β) is the distance between v2 and the vanishing point 

V. Because the angle β for v1 and v2 is the same, v1 and v2 are corresponding 

points. Suppose V1 and V2 are the perspective backprojections of v1 and v2. 

According to the property of perspective projection, we have 

V1: [Z1(X0+s(β)cos(β)), Z1( Y0+s(β)sin(β)), Z1]                           (D3) 

V2: [Z2(X0+t(β)cos(β)), Z2(Y0+t(β)sin(β)), Z2]                             (D4) 

where Z1 and Z2 are the Z value for V1 and V2. Suppose that V1 and V2 are 

mirror symmetric with respect to a plane  

πs: aX+bY+cZ+d=0.                                                        (D5) 

Then, the following two equations are satisfied.  

(1) The midpoint of V1 and V2 is on the plane πs.  

a(Z1(X0+s(β)cos(β))+Z2(X0+t(β)cos(β)))+b(Z1(Y0+s(β)sin(β))+Z2(Y0+t(β)sin(β)))+c(Z1+Z2)+2d =0 

(D6) 

(2) The line connecting V1 and V2 is parallel to the normal of the plane πs: 

[Z1(X0+s(β)cos(β))-Z2(X0+t(β)cos(β)) Z1(Y0+s(β)sin(β))-Z2(Y0+t(β)sin(β)) Z1+Z2]×[a b c] = [0 0 0]  

    (D7)
 

Equation (D7) is equivalent to the following three equations: 

c(Z1(Y0+s(β)sin(β))-Z2(Y0+t(β)sin(β)))-b(Z1-Z2)                               (D8) 

c(Z1(X0+s(β)cos(β))-Z2(X0+t(β)cos(β)))-a(Z1-Z2)                             (D9) 

b(Z1(X0+S(β)cos(β))-Z2(X0+t(β)cos(β)))-a(Z1(Y0+s(β)sin(β))-Z2(Y0+t(β)sin(β)))=0 (D10) 

Note equation (D10) is linear combination of equations (D8) and (D9). 

Equations (D8) and (D9) can be rewritten as  

(cY0-b)(Z1-Z2)+csin(β)(Z1s(β)-Z2t(β))=0                               (D11) 

(cX0-a)(Z1-Z2)+ccos(β)(Z1s(β)-Z2t(β))=0                              (D12) 

We multiply both sides of (D11) and (D12) by cos(β) and –sin(β), respectively, 

and then add left-hand sides and right-hand sides. 

(cos(β)(cY0-b)-sin(β)(cX0-a))(Z1-Z2) = 0                               (D13) 
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Note, equation (D13) should be satisfied for any symmetric pairs. It means for 

any value of β, equation (D13) should be satisfied, which means that: 

cY0-b = 0                                                       (D14) 

cX0-a = 0                                                       (D15) 

From (C14) and (C15), we can obtain 

b =cY0                                                           (D16) 

a =cX0                                                           (D17) 

Therefore, the symmetry plane can be rewritten as 

cX0X+cY0Y+cZ+d = 0                                              (D18) 

or  

X0X+Y0Y+Z+e = 0                                                (D19) 

where e = d/c. Note that the normal of the symmetry plane is [X0 Y0 1], which is 

the coordinate of the vanishing point. Note that the line connecting the origin 

(projection center) and the vanishing is parallel to the line connecting the 

recovered symmetric pairs. Because those lines are orthogonal to the 

symmetry plane, they indicate the direction of the normal of the symmetry 

plane. Therefore, the normal of the symmetry plane is equal to the vector from 

origin to the vanishing point. Equation (D18) shows that e is a free parameter, 

which indicates the position of the symmetry plane.  

From (C16) and (C11), we obtain 

Z1s(β)-Z2t(β) = 0                                                  (D20) 

From (C20) and (C6), we obtain 

                (D21) 

                (D22) 

From equations (D21) and (D22), the recovered shape is determined by the 

curves (t(β), s(β)) on the image and the vanishing point (X0, Y0). d/c that 

indicates the position of the symmetry plane is a scaling factor, which affects 

the size of the recovered object, but not its shape.  
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To summarize, for a perspective image of a mirror symmetric 3D shape, if the 

projection center and the vanishing point are known, the orientation of the 

symmetry plane and the 3D shape are uniquely determined. The size of the 

recovered is undetermined.  
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